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Abstract
The epithelial sodium channel [ENaC] is critical for the maintenance of sodium balance,
extracellular fluid volume and long term blood pressure control. Monogenic disorders causing
ENaC hyperactivity have led to a severe form of hereditary hypertension in humans, known as
Liddle's syndrome. Similarly, in animal models, ENaC hyperactivity has been well documented in
kidneys of salt-sensitive [S] Dahl rats [a genetic model of salt-sensitive hypertension] versus their
normotensive control [Dahl salt-resistant [R] rats]. The purpose of the present review is to
highlight the differential regulation of ENaC in kidneys of Dahl S versus R rats. A systematic
overview of the putative role of alternative splicing of the main α subunit of ENaC [α ENaC] in
modulating ENaC expression in kidneys of Dahl rats will be discussed. Finally, a better
understanding of the meaningful contribution of ENaC in the pathogenesis of salt-sensitive
hypertension will be achieved upon completion of this review.

Salt-sensitive hypertension
Over one-fifth of Canadian adults are diagnosed with
hypertension http://www.statcan.com and over 50% of
primary hypertensive patients are salt-sensitive [1].
Despite the fact that hypertension is the primary risk fac-
tor for stroke and heart disease, and has been labeled by
the "silent killer disease", yet 42% of Canadians are still
unaware of their increased blood pressures http://
www.heartandstroke.com/site/c.ikIQLcMWJtE/
b.3484023/.

These above statistics, combined with the realization that
salt-sensitive hypertension exacerbates mortality rates [2],
worsens manifestations of target organ damage [3,4] and
is a common finding in aging populations, emphasize the
importance of identifying novel targets for prevention and
treatment of salt-sensitive hypertension.

The major contributor to the pathogenesis of salt-sensitive
hypertension is dietary salt [5]. Dietary sodium, in turn,
has sodium chloride [NaCl] as its major constituent. The
sodium ion [Na+] is transported into the superficial cells
of several organs (see below) primarily via the amiloride-
sensitive Epithelial Sodium Channel [ENaC]. Owing to
the fact that inadequate Na+ excretion is a risk factor for
hypertension, ENaC represents an attractive therapeutic
target to study in salt-sensitive hypertension and α ENaC
regulation by alternative splicing will be the focus of the
present review.

ENaC α, β, and γ as candidate genes for blood 
pressure regulation
ENaC is highly selective for Na+ and mediates Na+- entry
[down an electrochemical gradient] through the apical
membrane of renal epithelial cells. ENaC also regulates
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sodium transport in other epithelia such as the alveolar
epithelium, distal colon, brain, salivary duct and sweat
glands [6-8]. Additionally, ENaC has proved essential for
lung fluid clearance in newborn mice [8] and the entire
salt taste perception in rodents.

Although the ENaC accounts for a small proportion of
renal sodium reabsorption [<5%], nevertheless it still con-
stitutes the rate-limiting step of sodium reabsorption in
the distal nephron. The control of Na+ movements in
these epithelia is critical for the regulation (or homeosta-
sis) of extracellular fluid volume, electrolyte balance and
long term blood pressure.

One of the major breakthroughs in understanding the
central role played by ENaC in blood pressure regulation
was the demonstration of linkage between the ENaC and
a rare form of hereditary severe salt-sensitive hypertension
[Liddle's syndrome] [9]. Gain-of-function mutations and/
or truncations in ENaC α, β and γ genes have been identi-
fied in patients with Liddle's syndrome. Later on, trans-
genic mouse models engineered with Liddle's mutations
confirmed the critical role of ENaC in blood pressure reg-
ulation [10].

In contrast, loss-of-function mutations in the α and β sub-
units of ENaC have been identified in patients with pseu-
dohypoaldosteronism, a salt-wasting nephropathy that
results in defective sodium transport in many organs con-
taining the ENaC, such as the kidney, lung, colon, sweat
and salivary glands.

In summary, ENaC serves as an attractive candidate gene
to study in salt-sensitive hypertension for the following
reasons: i] ENaC serves as a key channel in controlling the
rate of renal sodium reabsorption [7], ii] Genetic defects
causing ENaC hyperactivity have led to a monogenic form
of hereditary hypertension in humans [Liddle's syn-
drome]. This suggests that salt-sensitivity might arise from
subtle defects in ENaC function and/or regulation [11].
iii] Moreover, ENaC activity is twice as high in renal col-
lecting ducts of high salt-fed genetically predetermined
salt-sensitive Dahl S rats versus their normotensive con-
trols [Dahl R rats] that remain resistant to salt-sensitive
hypertension on high salt diet [12], iv] Finally, ENaC
blockade in the brain by benzamil rescued Dahl S rats
from salt-induced hypertension [13]. Therefore, owing to
the established importance of ENaC in blood pressure
regulation, and in an attempt to understand the genetic
differences in ENaC among Dahl S and R rats, the present
review will highlight the putative mechanisms of ENaC
regulation via alternative splicing. A comprehensive
review of ENaC structure, function and differences in
Dahl S versus R rats will be presented in details as a prelude
to alternative splicing regulation of ENaC.

Structure of ENaC
The amiloride-sensitive epithelial sodium channel
[ENaC] is composed of three homologous α, β and γ pro-
tein subunits of corresponding 698, 638 and 650 amino
acids in length [14,15]. ENaC α, β and γ subunits share
approximately 30% homology at the amino acid level and
each subunit correspond to a molecular mass of 70-85
kDa. The three ENaC subunits are inserted into the
plasma membrane with a proposed stoichiometry of 2:1:1
[16] or 3:3:3 [17,18]. The structure of the ENaC is found
in figure 1.

Each ENaC protein subunit is formed up of four major
domains: a cytoplasmic N-terminus, a large extracellular
loop, two short hydrophobic segments known as the
transmembrane domains 1 and 2 [TM1 and 2] and a cyto-
plasmic C-terminus. The N- and C- termini face the
cytosolic side, while the extracellular loop faces the extra-
cellular side [19]. The channel domains are important for
basic channel function such as the translocation of Na+-

Structure of the Epithelial Sodium Channel [ENaC]Figure 1
Structure of the Epithelial Sodium Channel [ENaC]. 
The amiloride-sensitive epithelial sodium channel [ENaC] is 
composed of three homologous α, β and γ protein subunits 
of corresponding 698, 638 and 650 amino acids in length 
[14,15]. ENaC α, β and γ subunits share approximately 30% 
homology at the amino acid level and each subunit corre-
spond to a molecular mass of 70-80 kDa. The three ENaC 
subunits are inserted into the plasma membrane with a pro-
posed stoichiometry of 2:1:1 [16] as shown in the above fig-
ure or 3:3:3 [18]. Each ENaC protein subunit is formed up of 
four major domains: the cytoplasmic N terminus, the large 
extracellular loop, the two short hydrophobic segments 
known as the transmembrane domains 1 and 2 [TM1 and 2] 
and the cytoplasmic C-terminus. The N- and C-termini face 
the cytosolic side, while the extracellular loop faces the 
extracellular side [19]. All three subunits cooperate to form 
the channel pore via the transmembrane domains.
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ions across the membrane and for the modulation of
ENaC activity at the cell surface. All three subunits coop-
erate to form the channel pore.

Among the channel domains the C-terminus has gained
considerably high attention because almost all mutations
discovered so far affecting the C-terminus cause a rare
form of hereditary hypertension called the Liddle's syn-
drome. These mutations target the PY motif [PPPXY,
where P = proline, X = any amino acid and Y = tyrosine]
within the intracellular C-termini of the three subunits
[20,21]. The PY motif provides a mechanism for enhanc-
ing ENaC retrieval from the plasma membrane. Therefore,
mutations of the PY motif prolong the half-life of the
channel at the cell surface as a result of impaired internal-
ization of ENaC [21].

At the genomic level, ENaC α, β, and γ protein subunits
are encoded by three different genes located on separate
chromosomes. The gene encoding the α ENaC subunit
[Scnn1a] is located on chromosome 4q42, while the β
and γ genes [Scnn1b and g] are located at a close proximity
from each other on chromosome 1q36-q41. The genomic
organization of ENaC genes is found in figure 2.

Significance of α ENaC versus β and γ ENaC
Of the three ENaC subunits, the α ENaC alone is critical
to the formation of a functional channel. This is because
the expression of α ENaC alone in Xenopus oocytes con-
fers a low amiloride-sensitive sodium current, whereas
neither the β nor the γ subunits can form conducting func-
tional channels when expressed alone in Xenopus
oocytes. β and γ ENaC only serve to maximize channel
activity [15,22].

The critical role of α ENaC is highlighted not only in
expression studies in Xenopus oocytes, but also by knock-
out mice models. α ENaC knockout mice died within 40
hours of birth because of water-clogged lungs and failure
of fluid clearance [23]. Moreover, decreased α ENaC
expression [without necessarily knocking out α ENaC]
predisposes animals to a respiratory distress syndrome
[24]. The β and γ subunits have only minor effects on lung
fluid clearance. Owing to the critical role of α ENaC in the
functionality of the channel, and the fact that it is the only
ENaC subunit with currently published alternatively
spliced forms in Dahl rats, α ENaC regulation by alterna-
tive splicing will be discussed in the current review.

Critical role of ENaC in kidneys of Dahl rats
Dahl rats serve as good candidates for studying ENaC.
Dahl rats are separated into two strains; the salt-sensitive
[S] and the salt-resistant [R] strain because of the inherent
genetic propensities of Dahl S, but not R rats to develop
hypertension on high salt intake [25,26]. Renal cross-
transplant studies demonstrated the decisive role of the
kidneys in regulating blood pressure in Dahl S rats on reg-
ular salt diet. Indeed, Morgan et al. were able to demon-
strate clearly that Dahl R rats when receiving an R kidney
did not develop hypertension on high salt diet, but did
with an S kidney [27]. This highlighted the critical role of
the kidney in salt-sensitive hypertension in Dahl S rats.

Additionally, in vitro studies do indicate that Dahl S rats
exhibit enhanced Na+ transport related to ENaC. This is
because monolayers of inner medullary collecting duct
cells when cultured in vitro and then examined electro-
physiologically showed twice the rate of Na+-transport
when obtained from S versus R rats. This increase in
sodium transport related to ENaC in Dahl S versus R rats is
apparently due to a primary increase in the conductive
permeability of the apical membrane to Na+. The authors
concluded that ENaC is intrinsically different or differ-
ently regulated in kidneys of S and R rats [12].

To date, there are few reports on the regulation of ENaC in
these rat models. Aoi et al. just recently reported an abnor-
mal increase in α ENaC mRNA [2.5-fold] in the kidneys of
Dahl S rats on high versus regular salt intake for 4 weeks
[28], while Dahl R rats showed a decrease in α ENaC

Genomic Organization of rat ENaC α, β, and γ subunitsFigure 2
Genomic Organization of rat ENaC α, β, and γ subu-
nits. At the genomic level, ENaC α, β, and γ subunits are 
encoded by three different genes located on separate chro-
mosomes. The gene encoding the α ENaC subunit [Scnn1a] 
is located on chromosome 4q42, while the β and γ genes 
[Scnn1b and g] are located at a close proximity from each 
other on chromosome 1q36-q41 [RGD: Rat Genome Data-
base]. α ENaC is composed of 12 exons, whereas each of the 
β and γ ENaC genes are composed of 13 exons. Translation 
starts in exon 1 for α ENaC and starts in exon 2 for β and γ 
ENaC. Translation ends in exon 12 for α ENaC and in exon 
13 for β and γ ENaC. Therefore the 5'untranslated region 
[UTR] is included in exon 1 of α ENaC and in exons 1 and 2 
of β and γ ENaC genes, while the 3'UTR is included in exon 
12 of α ENaC and exon 13 in each of β and γ ENaC. Light 
shaded boxes represent the translated regions, while the 
black boxes represent the 3' and 5' UTR.
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mRNA [29]. Changes in ENaC protein abundance have
not been reported, which is important since ENaC under-
goes extensive post-translational regulation.

ENaC Differential Regulation in Dahl S versus R 
rats
It is essential to recognize that ENaC mutations might be
the reason behind the enhanced α ENaC expression and
overall ENaC activity in Dahl S versus R rats. A comprehen-
sive ENaC α, β, and γ screening study is worthwhile to rule
out or rule in the contribution of genetic mutations in the
enhanced overall ENaC activity in Dahl S versus R rats. On
the other hand, lack of mutations in ENaC genes in Dahl
S and R rats will leave us with poorly understood mecha-
nisms behind the enhanced ENaC activity in Dahl S versus
R rats. An additional potential strategy for the differential
ENaC regulation in Dahl rats - besides sequence variabil-
ity of ENaC genes in Dahl S versus R rats- is via alternative
splicing for the principle α ENaC subunit, which is the
focus of the present review. Although it is accepted that
ENaC activity is dynamically modulated by regulation of
channel trafficking to the luminal membrane, little is
actually known about the cellular control points and
queues impinging upon this modulation. In addition,
interactions of ENaC with ENaC alternatively spliced
forms and the outcome of such interactions on channel-
subunits expression is important for channel assembly,
localization to the luminal membrane and activity, and
yet remains nebulous.

Regulation of α ENaC by alternative splicing: 
What is currently known?
Naturally occurring alternatively spliced forms have been
reported for the α ENaC [not the β, or γ ENaC] in humans
[30], mice [31], and chicken [32] suggesting that alterna-
tive RNA splicing is most likely a mechanism regulating α
ENaC activity. To date, there are two alternatively spliced
forms [α ENaC-a and -b] of the α ENaC subunit that are
currently published in rats [33,34]. α ENaC-a and -b are
identified in the rat kidney and tongue taste tissues [33];
[34]. The exon-intron organization of these two alterna-
tively spliced forms are found in figures 3 and 4. The
potential biological role of these alternatively spliced
forms in ENaC regulation prior to and after salt loading in
Dahl S rats is yet to be examined. Interestingly the 5'
donor splice site [CCTGGG] used to create the α ENaC-a
and -b was also utilized to create the α ENaC +22 splice
variant in humans [30] and the 3399 bp variant in
chicken [32]. This conservation for the 5' splice site across
species underscores the significance of α ENaC-a and -b
spliced forms in ENaC regulation.

Prior to an in depth discussion of the α ENaC alternatively
spliced forms, we need to discuss the α ENaC subunit in
depth. α ENaC is composed of 698 amino acid with a
molecular weight of 78.8 kDa. Amino acid residues from

1 to 110 reside in the cytoplasm, amino acid residues
from 111 to 131 constitutes the first transmembrane
domain, 132-589 constitute the extracellular loop, 590-
610 constitute the second transmembrane domain, and
611-698 are cytoplasmic. The exon-intron structure of α
ENaC is found in figure 2.

α ENaC-a transcript is a low abundance transcript com-
pared to full length α ENaC and has been studied in terms
of expression, functionality and binding to ENaC blocker
[33]. On the other hand, α ENaC-b is yet to be character-
ized. α ENaC-a alternatively spliced form is formed by the
deletion of 23 nucleotides from exons 7 and 8 [33,34].
This deletion introduced a premature stop codon and
resulted in a shorter protein at the carboxy terminus by
199 in α ENaC-a. This resultant shorter protein lacked the
second transmembrane domain which is important in
channel pore formation. The α ENaC-a form alone has
been studied in depth in terms of expression, tissue distri-
bution, functionality in vivo and binding with the phen-
amil compound [phenamil is a derivative of amiloride
and acts as a channel blocker] [33,34]. α ENaC-a alterna-
tively spliced form is expressed in the rat kidney, tongue
epithelia and tongue taste tissues enriched in circumval-
late papillae. Regarding functionality, α ENaC-a failed to
generate amiloride sensitive Na+ current when expressed
in Xenopus oocytes, but still retained binding with the
channel blocker [phenamil] that was greatly enhanced.
This demonstrates that the amiloride-binding site resides
in the extracellular loop of the channel and not the second
transmembrane domain.

On the other hand, α ENaC-b formation involves exon 8
skipping [79 nucleotides]. α ENaC-b is a truncated pro-
tein of 53 kDa that is identical to full length α ENaC up to
amino acid 480, followed by one novel amino acid
unique to α ENaC-b after which the stop codon termi-
nates translation. α ENaC-b lacks the second transmem-
brane domain which is critical in channel pore formation
[figure 1]. The significance of the second transmembrane
domain is highlighted by the presence of the ENaC selec-
tivity filter [that allows for a high selectivity for Na+] in a
region localized to a three-residue [G/SxS] track immedi-
ately preceding the second transmembrane domain of the
ENaC subunits. This track resides in the narrowest part of
the pore to exclude all, but the smallest cations. The three-
residue track is located at amino acid 587, 529, 534 for
ENaC α, β, and γ respectively [35]. Not only does TM2
control ion selectivity, but also contribute to ion permea-
tion. Point mutations of selected residues within TM2 par-
ticularly amino acids 595 and 602 reduced Na+ currents
significantly and allowed for K+ permeation over Na+ per-
meation [36]. Owing to the critical role of the second
transmembrane domain, α ENaC-b is expected to be a
non functional transcript similar to α ENaC-a that previ-
ously failed to generate amiloride sensitive Na+ current
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when expressed in Xenopus oocytes [33]. Because of the
non functionality of all α ENaC alternatively spliced
forms in all species, it has been proposed to act as domi-
nant negatives on the wildtype α ENaC. The genotoxic
effects of alternatively spliced forms have been widely
reported in several proteins, channels and membrane
receptors and will be highlighted in section VI.

In agreement with the potential significance of alternative
splicing in regulating ENaC, Xu et al., demonstrated a sup-
pression in α ENaC spliced forms by oxidative stress in the
lung epithelial cells in humans [37]. This finding is critical

for ENaC regulation in Dahl rats because of the remarka-
ble oxidative stress levels reported in most of the tissues of
high-salt-fed Dahl S rats [38-40].

Our current review examines two potential mechanisms
by which α ENaC spliced forms regulate the renal full
length α ENaC possibly by a dominant negative effect.
The first mechanism is through the enhanced binding of
α ENaC spliced forms protein to the full length α ENaC.
Enhanced binding of α ENaC spliced forms to the full
length α ENaC might in itself hinder proper channel
assembly and interfere with proper channel activity. It

α ENaC alternatively spliced formsFigure 3
α ENaC alternatively spliced forms. A schematic illustration of alternative mRNA splicing of α ENaC wildtype, 
-a and -b forms. α ENaC wildtype is made of 12 exons, while α ENaC-a is formed of exons I to VIII, with a 23 bases deleted 
from exon VIII. On the other hand, α ENaC-b is formed of exons I to IX with a skipping of exon VIII [79 bases]. Underneath 
each mRNA splicing comes the protein organization of the 2 alternatively spliced forms of α ENaC [α ENaC-a & -b] that have 
been published in rats [33] in comparison to α ENaC wildtype major transcript. α ENaC wildtype is 698 amino acids in length 
[2100 bp]. Amino acid residues from 1 to 110 reside in the cytoplasm, amino acid residues from 111 to 131 constitutes the 
first transmembrane domain, residues 132 to 589 constitute the extracellular loop, residues 590 to 610 constitute the second 
transmembrane domain, and residues 611-698 are cytoplasmic. α ENaC-a alternatively spliced form is formed by the deletion 
of 23 nucleotides from exon 8, whereas α ENaC-b is formed by the deletion of 79 nucleotides that involved exon 8 skipping. 
These deletions introduced a premature stop codon and resulted in shorter proteins at the carboxy terminus by 199 in α 
ENaC-a and 216 amino acids in α ENaC-b, making α ENaC-a 499 amino acids [2077 bp] and α ENaC-b 482 amino acids [2021 
bp] in length. These resultant shorter proteins lacked the second transmembrane domain [TDM2] which is important in chan-
nel pore formation. α ENaC-a alternatively spliced form is a low abundance transcript that is expressed in the rat kidney, 
tongue epithelia and tongue taste tissues. α ENaC-a binding with the channel blocker [phenamil] was greatly enhanced. This 
demonstrates that the amiloride-binding site [i.e ENaC blocker site] resides in the extracellular loop of the channel and not the 
second transmembrane domain that is presently missing in α ENaC-a [CD: cytoplasmic domain, TDM1: transmembrane 
domain M1, EC: extracellular loop, TDM2: transmembrane domain M2].
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might as well facilitate ENaC degradation in the cyto-
plasm and/or inhibit proper ENaC insertion into the
plasma membrane, and therefore, contribute to the for-
mation of non functional channels. The second mecha-
nism is through an enhanced degradation of full length α
ENaC as a result of direct binding to α ENaC spliced
forms, a phenomenon that has been reported previously
in several other channels and membrane proteins [41-46].

Implications of alternative splicing of ion-
channels: Possible confounders in the 
"Genotoxicity" of α ENaC alternatively spliced 
forms
Alternative splicing is a regulated process that takes place
when the exons of a certain pre-mRNA are spliced in more
than one way to yield several possible mature mRNAs
from a single gene. 59% of human genes have more than
one splice form [47], and 80% of alternative splicing
changes the encoded protein [48]. The functional signifi-
cance of ion channel-alternatively spliced forms vary con-
siderably from altering the channel activation and
inactivation rates for K+ channels [49,50], to altering gat-
ing properties for Ca++ channels [51], unit conductance,
ion selectivity or sensitivity [52], or fine physiological tun-
ing for optimal tissue performance [41,53].

Aside from the fact that alternative splicing is a major con-
tributor to the structural and functional diversity of ion
channels such as the Na+, K+, and Ca++ channels, a major
surge of interest has been recently witnessed in the geno-
toxic potential of alternatively spliced forms on full length
forms [41-45]. Often, dominant negative alternatively

spliced forms sequester the full length form in the cyto-
plasm and subsequently enhance its proteolytic degrada-
tion, such an intriguing phenomenon that greatly
emphasize the importance of alternative splicing in phys-
iology, development and disease [54-57].

Moreover, the biological impact of alternatively spliced
forms, particularly those lacking functional domains such
as the second transmembrane domain in α ENaC-a and -
b, may go as far as a switch-off effect [58]. However, one
might wonder if the "genotoxicity" of a given spliced form
is exerted mainly at the expense of full-length transcrip-
tion and/or translation [potentially by accelerating full-
length proteolytic degradation]; or if it is primarily
impacting channel assembly and/or translocation to the
plasma membrane; or if it solely hinders channel cell sur-
face expression and/or activity? [Figure 5].

Alternatively spliced forms have been shown to impair
any of the above mentioned cellular processes, either
independently or in synergy. For example, a spliced form
of the K+ channel [SV1] was shown to impair full-length
translation, subunit assembly, translocation to the plasma
membrane, cell surface expression and activity. SV1 spe-
cifically inhibited cell surface expression of the full-length
K+ channel α or β subunits by ~80%, by trapping them in
the endoplasmic reticulum [ER] [41]. SV1, in turn, pre-
vented subunit trafficking to the plasma membrane
because of retention in the endoplasmic reticulum. More-
over, SV1 diminished protein expression of the K+ channel
subunits and cells that express it failed to generate a cur-
rent.

Schematic representation of wildtype and the alternatively spliced forms α ENaC-a & -bFigure 4
Schematic representation of wildtype and the alternatively spliced forms α ENaC-a & -b. A. The genomic 
sequence of α ENaC wildtype, -a and -b forms. The alternatively spliced forms α ENaC-a & -b share the same splicing 
site [CCTGGG] which is located within exon VII. α ENaC-a & -b had 23 and 79 bases deleted respectively resulting in the for-
mation of a premature stop codon. B. The protein sequence of α ENaC wildtype, -a and -b forms. The deletions of 23 
and 79 bases respectively in α ENaC-a & -b introduced a premature stop codon and resulted in shorter proteins at the car-
boxy terminus by 199 in α ENaC-a and 216 amino acids in α ENaC-b, making α ENaC-a 499 amino acids [1497 bp] and α 
ENaC-b 482 amino acids [1446 bp] in length. The α ENaC-a and -b truncated proteins of approximately 55 and 53 kDa respec-
tively, are identical to wildtype α ENaC up to amino acids 481 and 480 respectively, followed by 17 and 1 novel amino acids 
unique to the spliced form after which the stop codon terminates translation (adapted with permission from reference  [33]).

A.
Wt  ENaC 
CCTGGGGCTATTGCTATTATAAACTGCAGGGCGCCTTCTCCTTGGACAGCCTGGGCTGTTTCTCCAAGTGTCGGAAGCCTTGTAGTGTGATCAACTAC 

 ENaC-a 
CCTGGG-------------------------------------------------GGCGCCTTCTCCTTGGACAGCCTGGGCTGTTTCTCCAAGTGTCGGAAGCCTTGTAGTGTGATCAACTAC 

 ENaC-b 
CCTGGG-------------------------------------------------------------------------------------------------------------------------------------------------------------TGTGACCAACTAC 

B.
Wt  ENaC   EFCDYRKQSSWGYCYYKLQGAFSLDSLGCFSKCFSKCRKPCSV

 ENaC-a      EFCDYRKQSSWGRLLLGQPGLSLQVSEALSTOP

 ENaC-b      EFCDYRKQSSWVSTOP  
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Similarly, splice variants of the cation-channel [TRPV4]
impaired subunit oligomerization, enhanced subunit
accumulation in the endoplasmic reticulum and hindered
trafficking [59]. Additionally, a spliced form of the inhib-
itor of apoptosis protein family was shown to be
expressed at mRNA levels that were 2-3% of the levels of
the full-length transcript, yet it encodes a protein that
accumulates 50-fold higher levels than full-length and
this accumulated protein competes with full-length form
for activity [60]. Likewise, co-expression of the calcium
sensing receptor splice variant with its full-length form
reduced the expression and activity of the full-length form
in a dose-dependent fashion [61]. Consistent with the
notion of a so-called "dominant negative" effect of alter-
natively spliced forms on full-length forms, a spliced form
of the GTP cyclohydrolase enzyme [GCH] suppressed full-
length GCH form expression levels in a dose-dependent
manner, possibly by heteromeric interactions that ulti-
mately decreased the stability and activity of the full-
length form [45].

As such, common findings that support the role of a
spliced form as a dominant negative expression regulator

can be summarized as follows: a] the spliced form is non-
functional [42], b] the frequency of the spliced form is
higher relative to the full-length form; c] the spliced form
heterodimerizes with the full length form [45]; and finally
d] the spliced form accelerates full-length form degrada-
tion by trapping the latter in the endoplasmic reticulum
[42].

Conclusion and future perspectives
Owing to the fact that alternative splicing is a strictly reg-
ulated process, and that alternatively spliced forms either
serve as important regulators for the parent gene, possibly
by a dominant negative effect, or as diagnostic markers for
several pathological states particularly human genetic dis-
eases, therefore, this review was meant to highlight recent
findings with regards to the putative mechanism by which
α ENaC alternatively spliced form [s] modulate ENaC
activity in response to high salt diet in Dahl-S versus R rats.
Understanding the significance of α ENaC alternative
splicing in modulating ENaC in kidneys of Dahl rats is
worthwhile because of the enhanced ENaC activity in
Dahl S versus R rats.

Knowledge of the mechanism by which α ENaC spliced
forms regulate full length α ENaC and possibly prevent
the hyperactivity of ENaC in Dahl S rats and the subse-
quent genesis of salt-dependent hypertension [a disease
that comprises a large subgroup [over 50%] of Canadian
adults] would certainly enhance the understanding of the
basic regulation of ENaC and the pathophysiology of
ENaC-associated disorders such as salt-sensitive hyperten-
sion. It may also create one or more specific targets for the
development of novel anti-hypertensive drug or gene ther-
apy.
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