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Abstract

Anatomy plays a fundamental role in supporting and shaping nervous system activity. The remarkable progress of
computer processing power within the last two decades has enabled the generation of electronic databases of
complete three-dimensional (3D) dendritic and axonal morphology for neuroanatomical studies. Several laboratories
are freely posting their reconstructions online after result publication v.gr. NeuroMorpho.Org (Nat Rev Neurosci
7:318-324, 2006). These neuroanatomical archives represent a crucial resource to explore the relationship between
structure and function in the brain (Front Neurosci 6:49, 2012). However, such ‘Cartesian’ descriptions bear little
intuitive information for neuroscientists. Here, we developed a simple prototype of a MATLAB-based software tool
to quantitatively describe the 3D neuronal structures from public repositories. The program imports neuronal
reconstructions and quantifies statistical distributions of basic morphological parameters such as branch length,
tortuosity, branch's genealogy and bifurcation angles. Using these morphological distributions, our algorithm can
generate a set of virtual neurons readily usable for network simulations.
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Results and discussion

Electronic databases of complete 3D dendrites constitute
a valuable tool to explore the morphological structure of
single neurons [1]. The data acquisition of those structures
comprises a multi-step process from tissue collection and
staining to the extraction of neuronal structural informa-
tion via a variety of imaging techniques. To date, the ma-
jority of dendritic and axonal morphology reconstructions
are based on bright-field microscopy mainly because of
its broad compatibility with histological staining methods
[2]. Digital tracing of neuronal morphology converts large
amounts of imaging information into a simple and
compact representation which can be easily visualized,
quantified, archived, and shared [3], thus maximizing
the opportunity to exploit the full potential of unrestricted
morphometric analyses [1,4].

There are multiple ways to digitize neuronal morph-
ology once it has been visualized by optical microscopy.
One effective way to describe the treelike branching of
axons and dendrites can be achieved by using a sequence
of interconnected cylinders. In this 'vector' representation,
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each uniform segment in the arbor can be characterized
by five values, consisting of the three Euclidean 'x, 'y' and
'z' coordinates, a diameter of its ending location, and the
identity of the 'parent’ segment from which each new
segment originates. Thus, by definition, compartments
are segments represented as cylinders with a given diam-
eter and the coordinates of the extreme points. Branches
are formed with one or more compartments between the
soma, the bifurcations, and the tips. Bifurcations are de-
fined as the points where a branch splits into 'daughter’
branches.

This 'Cartesian’ description of neuronal structures con-
stitutes a complete mapping of dendritic morphology
but bears little intuitive information. To extract quanti-
tative measures of neuronal morphology, we developed
a software tool written in MATLAB (MATLAB R2012a,
MathWorks, Inc.) that reads these 3D dendritic recon-
structions and computes morphological parameters from
a large and representative set of neurons. This tool is
freely available upon request.

To implement and test our algorithms, we used digitally
reconstructed hippocampal neurons from different reposi-
tories, grouped as follows: Group 1: 6 Dentate Gyrus 'aged’
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Granule Cells (referenced as n270-n275 from the Duke-
Southampton archive; http://neuron.duke.edu), Group
2: 4 CA3 'young' Pyramidal Cells (referenced as 110,
148a, 160b and 164 from the Duke-Southampton
archive), Group 3: 15 CAl 'aged' Pyramidal Cells
(referenced as n170-n184 from the Duke-Southampton
archive), and Group 4: 18 CAl 'young' Pyramidal Cells
(referenced as a series of pyramidal cells from the Gulyas
CAL1 repository; http://www.kokihu/~gulyas/).

Our software imports the cells, which are stored in a
non-proprietary *swc format including a header of
comments where each line is preceded by a '#' sign.
These lines describe the program used for neuron tracing
(usually Neurolucida, MicroBrightField, Inc.), localization
of the neuron (region, Field/Layer, etc.), type of cell,
contributor, reference, soma area, shrinkage correction,
number and date versions. Followed by these remarks,
the *.swc file consists of a [# x 7] matrix which contains
the following fields: Index (Column 1), a user defined flag
denoting the specific part of the structure (cell body, apical
dendrites, basilar dendrites and axon; Column 2), 3D
coordinates (X, y, z, in um; Columns 3-5), radius (r, in
pm; Column 6), and parent index (Column 7). As two
points connected by a straight line constitute a segment,
then each neuronal reconstruction with » points has n-1
total segments, where # is the maximum row size of the
matrix. The import file function deletes the header and
stores the coordinates into a [# x 7] matrix in MATLAB’s
workspace for further analysis. In all cases the X', 'y' and
'z' values were corrected for shrinkage and lens medium
refraction.

The identification of the branches was performed
following a series of rules that determine whether two
segments belong to the same branch. A segment is speci-
fied as a pair of points joined by a straight line and defined
in the matrix as a pair of rows where the parent index of
the first row (column 7) equals the index of the second
row (column 1). Graphically this is the line that connects
(xpysz;) with (x;,y;,z;) where 'i' is the parent index and ' is
the index. A branch is therefore conformed by one or
more segments. Two connected segments belong to the
same branch only if: i) the parent index of the second
segment equals the index of the first segment, ii) both
segments share the same structure flag stored in column
2 and iii) there is no other segment in the whole matrix
that has the same parent index. If these restrictions ap-
plied, a sequential numerical label was assigned to the two
segments in order to specify that all segments with the
same name belonged to the same branch. At the end of
this procedure, the set of rows that share the same first-
name conform a branch whose first-name is a unique
numerical label (Figure 1A-C). Once each branch has
its own first-name it is possible to track the path of its
ancestors back to the soma (Figure 1D). Consequently,
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the 'full-name’ of a branch is computed as follows: the
parent index in each row points to another row, which
belongs to a branch with an already assigned first-name.
Unless both rows belong to the same branch (i.e. having
the same first-name), this name corresponds to the row’s
parent name. The row’s parent-name (i.e. a full name) is
stored and this process is repeated until the whole branch-
ing genealogy is generated. Thus, at the end of this
process, each row has an associated full-name which can
be traced backwards to its ancestors (Figure 1D). Here
again, the set of rows that share the same full-name con-
form a branch. Full-name length (number of ancestors+1)
equals the path-length and this measure was further used
to compute topographic measurements (see below). Our
algorithm successfully identified branches and assigned
a full-name to each of them. Plots assigning a pseudo-
random color to each branch confirmed that all branches
were correctly identified, including those that generated
dichotomous bifurcations (Figure 1E). Additionally,
the plotter was able to represent vector’s width equal
to segment’s diameter and/or assign four different colors
depending on the specific cell structure (cell body, apical
dendrites, basal dendrites or axon) according to the user-
defined flag stored in the second column of the matrix
(not illustrated).

Before being subjected to quantitative analysis, we first
plotted the experimentally reconstructed neuronal struc-
tures by computer-assisted graphical rendering, zooming,
panning, and rotating (Figure 2). This allowed us to
visualize the neurons as a series of black connected vec-
tors (following index/parent index rules). Dendrites of
hippocampal principal neurons displayed a polarized
shape, as if they were enclosed in cones [5-7]. Further-
more, in hippocampal pyramidal cells (Figure 2B-H),
basal and apical trees invaded opposite hemi-spaces,
whereas the hippocampal granule cell tree invaded the
same hemispace (Figure 2A). The dendritic arbors were
clearly fanned out, each seemingly maintaining a preferred
orientation throughout their length [6,7].

The analyzed cells from the Duke-Southampton arch-
ive exhibited a tendency to deviate repeatedly from the
straight direction and return to the initial orientation after
considerable meandering ('zigzags' towards the z-axis,
Figure 2A, B). It is known that the acquisition and assem-
bly procedures introduce morphological noise in any rep-
resentation of digitized neurons [9-11], which makes it
difficult to carry out a meaningful statistical analysis. We
implemented a feature to perform z-coordinate smoothing
aimed to diminish morphological parameter miscalcula-
tions due to such extensive amount of noise in the 'z' axis
(Figure 2B, C). Specifically, this function smoothes the
'z data of each branch using a moving average filter. As
the spatial distribution of points defining segments is
not uniform, their distance projected in the 'xy' plane is
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soma

dendritic tree

Figure 1 Branch identification and genealogy. (A) According to a putative digital neuronal reconstruction, it is possible to isolate all segments
that belong to a specific dendritic tree. (B) The branch identification procedure allows detecting all branches (represented with different colors),

each one containing a series of connected segments (numbers of segments beside each branch). (C) First-name assignment provides an arbitrary
but unique numerical label to each branch. (D) For a specific branch, full-name assignment 'routes' the names of the preceding branches backwards
to the soma. A branch is identified by its full-name, which also provides information about its ancestors (ie. how many ancestors it has and which are their

different random-assigned colors. Calibration bars 100 pum.

first-names). (E) An isolated basal dendritic tree from CA1 cell pcdc_b (same as in Figure 2, panel E). Different branches are rendered using

used as predictor data for the z-smoothing. However,
applying this procedure to each independent branch
would result in local 'z-jumps' at bifurcations and spatial
continuity between related branches is required. To
solve this problem, the smoothing was performed con-
catenating two additional points located at the branch’s
endings: the first point given by an average of the final
z-coordinate of the parent plus the initial z-coordinate

of the sister. The latter represents the average of the initial
z-coordinates of all daughters (if present). Aside from
these issues, it is important to mention that the criteria
for sampling data points for a morphological structure
are subjective and to some extent arbitrary. Due to the
complexity of dendritic morphology, the very same
neurons mounted on microscope slides, and traced by
different researchers or on different reconstruction
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Figure 2 Qualitative Neuronal Inspection. The figure shows eight panels (A-H) rendering cells from the Duke-Southampton archive and the
Gulyds repository (see Results and Discussion). Each panel presents one plotted cell seen from two different viewpoints. Top panels correspond to
the 'xy' viewpoint and bottom panels to the 'yz' viewpoint (ie. 90° rotation). Cells belonging to the Duke-Southampton archive have a similar z-axis

noise [8]. Cell smoothing successfully abolishes z-noise (compare B vs. C, 'yz' viewpoint). Calibration bars 100 um.

systems, can result in considerably different digital files
[10]. In this context, the issue of quality control for
morphological data is extremely important and should
be taken carefully into consideration in any morphological
study before interpreting the results. In other words,
digital files of dendritic morphology are rarely accurate
representations of biological structures; they constitute
only an approximation of the neuron. Nevertheless, if a
digital data set is internally consistent (v.gr. correct index-
ing, no '0-length segments’, etc.), then the mathematical
problem of its quantitative representation is independent
on the data quality.

Geographical studies have proposed various ways of
ordering branches in a stream network. Contemporary

interest in stream ordering derives largely from the work
of Horton [12], who drew attention to a number of em-
pirical regularities, usually now known as Horton’s laws.
His ordering scheme, however, is described as a variant
of a method proposed later by Strahler [13]. 'Strahler or-
dering' assigns a number to each segment of the tree,
which we refer to as the Strahler order number. Strahler
ordering consists of the following steps: it starts with
the ending branches of the rooted tree, that is, with
those nodes, excluding the root, which are contiguous
to only one edge. All edges that are contiguous to a
branch are branches of order 1 (Figure 3A). These are
streams with no tributary. When two or more branches
of order m come together, the third edge contiguous to
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11 Strahler Ordering

dendritic tree

Figure 3 Strahler ordering scheme. (A) Schematic drawing of a
dendritic tree with full-named branches. Computation of counters
corresponding to the Strahler ordering for each branch. (B) Strahler
Ordering Scheme for a reconstructed cell. A pyramidal CA1 cell from
the Gulyas repository (Group 4, pc4c) was used to validate an
effective Strahler indexing. The plot shows each branch with a
different color (black, red, green and blue) corresponding to Strahler
indexes (1, 2, 3 and 4) respectively. Notice the high number of
terminal branches at the proximal and distal apical dendritic tree.

that branch belongs to a branch of order [m+1]. When a
branch of order m meets a branch of order n, where n
exceeds m, the third edge at the branch is a continuation
of the branch of order » (Figure 3A). There are no arbi-
trary decisions in Strahler ordering, and it is purely
topological. We tested the Strahler ordering function
for correct indexing with a reconstructed neuron. Inter-
estingly, all the pyramidal CA1 cells from the Gulyas re-
pository had very low maximum Strahler indexes. This
can be explained by the high number of terminal
branches along their paths (Figure 3B).

Because cells belonging to the Gulyds repository
(Group 4; Figure 2D-G) showed no z-noise, we used them
for further testing of morphological analyses. Accumula-
tive morphological measurement consists of those param-
eters that require calculations made by using information
from multiple segments. For example, the length of a
branch is computed as the sum of the Euclidean
lengths (in 3D) from all segments belonging to this
branch. Tapering, measures changes in diameter along
all the segments within a branch. This is reported as
the slope of a linear regression model adjusted to all
diameter values as a function of the accumulative branch’s
length. Additionally, a mean diameter/branch + S.E.M
is reported. Also, the distance metric (DM) tortuosity
(a dimensionless number) provides a ratio between the
actual path length of a meandering curve (i.e. along
segments) and the linear distance between endpoints,
whereas the sum of angles metric (SOAM) tortuosity
integrates total curvature along a curve and normalizes
it by path length [14,15], thereby handling tight coils
better. Thus, for any point P, we defined the vectors
T1:Pk-Pk,1, T2:P1(+1-Pk, and T3=P1(+2-Pk+1. The in-
plane angle at point Py (IPy) and the torsional angle

Page 5 of 9

(TPy) were given by the following equations, where
TPk, IPk € [O,T[]Z

T1 T2
IP = -1 — || ——
e (<|T1|> (|T2|)>
3 T1 x T2 T2 x T3
O \\rrx 12])°\[T2 x T3]

The total angle CPy at point Py is then

TPy =

CPy = \/(IPx x IP;) + (TP x TPy)

The SOAM calculates the total tortuosity of the
curve as

n-3
CPy

SOAM = =L

n-1
|Pk—Py-1]
k=1

Note that this expression normalizes the total curvature
with respect to total curve length. This means that SOAM
values can be compared between two branches of different
length.

Bifurcation angles are taken as the angle between a
daughter and its parent branch. To compute bifurcation
angles between a daughter and its parent branch it is
first necessary to calculate directional vectors at the be-
ginning and at the end of each branch. The bifurcation
angle between two branches does not only depend on
its terminal segments. For this reason, when computing
directional vectors it is necessary to consider several
segments and then proceed with a 3D linear regression
from where a normalized directional vector will be ex-
tracted. We used five segments per branch for direc-
tional vector computation (although we believe that the
number of segments used should be justified in terms of
their tortuosity).

Once accumulative morphological parameters are
stored in the last row of each branch, it is possible to
make a 'vertical compression' to produce a new matrix
with each row corresponding to information from a
branch with its respective accumulative morphological
parameters.

Rall’s pioneering development of the idealized equiva-
lent cylinder model for passive dendrites [16] opened up
the field of neuronal modeling. One prediction of his
model is that the sum of the diameters of the daughter
branches at each bifurcation, raised to the 3/2 power,
must equal the parent branch diameter also raised to 3/2
power (the '3/2 power rule'). Therefore, our software
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Figure 4 Frequency Distributions of Morphological Parameters. Three groups of dendrites from granule cells (A), and from apical (B) and
basal (C) dendrites of CA1 pyramidal cells were used to compute relevant morphological parameters such as number of branches, number of
bifurcations, bifurcation angle, radius and number of branches with a specific branch length. Bin selection was made independently for each

group according to Sturge’s rule. Bar-plots represent mean =+ standard error of the mean. Calibration bars 100 pm.
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computes 'Rall’s exponent' for each particular branch
point by minimizing the following difference:

" R_Exponent

deg (X/)_ Z (di (X/))I/RJ:'xponent —0

i=1

All basic parameters were measured from digital files
of traced neurons. Raw data for each parameter were
extracted in the form of simple arrays, grouped for each
cell class and characterized with histograms representing
frequency distributions. Group results for three groups of
granule cells (4A), apical (4B), and basilar (4C) dendritic
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trees of CA1 pyramidal cells are shown in Figure 4. Bin se-
lection was made independently for each group according
to Sturge’s rule. However, selecting the same bin width for
each histogram distribution allowed us to detect correla-
tions between measurements for the same trees (such as
depthxlength and Euclidean distancexpath distance; data
not shown) as well as differences between morphological
basic parameters of different dendritic trees (Figure 5). For
example, apical CA1 dendritic trees project at longer dis-
tances than basilar dendritic trees. This feature is reflected
in the frequency distribution of the number of branches
located at different 'Euclidean’ path lengths (with the

-
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starting point at the soma), and also when comparing
the number of branches at different paths from the
soma (Figure 5). Notably, branches from both dendritic
trees show similar lengths, which indicates that both
dendritic trees are constructed upon equally long branches
(Figure 5). In other words, a longer dendritic tree (in
spatial terms) is a consequence of the number of total
branches employed to build the tree.

Elucidating the complex organization of the brain will
require synthesis of information about neuron types, the
spatial patterns of their dendritic and axonal arborizations,
cell numbers and densities, as well as synapse number and
location [17,18]. In the central nervous system, the shape
of the dendritic arbor is related to the cell-type specificity
and to the large number of synaptic inputs. The extent of
dendritic arbors, at least in sensory neurons of the periph-
eral nervous system, physically defines their receptive
fields [19], and axonal topology is known to affect synaptic
output [20]. Discoveries that many dendrites conduct in-
put signals actively, back-propagate action potentials, and
integrate synaptic inputs by means of time-dependent
nonlinear summation provide indisputable evidence that
dendritic morphology is a key aspect of the neuronal ma-
chinery underlying signal processing and integration [21].
Dendritic structure contributes significantly to neuronal
information processing [22,23] and computational models
have shown that dendritic geometry can be responsible
for producing an entire spectrum of firing patterns dis-
played across different cortical neuronal types [24], and
also within a single class of hippocampal neurons [25].
The importance of dendrites for neuronal activity is evi-
denced by the influence of dendritic morphology on net-
work connectivity [26] as it is constantly reshaped by the
dynamic remodeling of both dendrites and axons, which
is crucial in determining the pattern of synaptic formation
among neurons [27].

Here, we developed a prototype of a MATLAB based
software package to characterize neuronal dendrites on
the basis of the statistical distributions of morphological
parameters. From a merely morphological point of view
and assuming that cells located on a specific site and
under strict experimental conditions share similar mor-
phological properties, the neuroanatomy of a cell class
can be measured and compressed by quantifying statis-
tical distributions of relevant morphological parameters.
Such an approach is important for understanding the
heterogeneity of the different neuronal groups, as well as
for unveiling the relationship between neuronal structure
and function. Hence, this tool can be applied for compara-
tive anatomy, developmental neurobiology and medical
diagnosis [4]. The resulting statistical descriptions of neur-
onal morphology can be further used to create an unlim-
ited number of non-identical virtual neurons (data not
shown). Virtual generation of axonal and dendritic arbors
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is useful to explore mechanisms of growth [28,29] and to
construct biologically realistic neural networks [28,30].
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