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Abstract

Background: The literature did not evidence yet with which age spontaneously hypertensive rats (SHR) start to
present baroreflex reduction. We endeavored to evaluate the baroreflex function in eight-week-old SHR.

Methods: Male Wistar Kyoto (WKY) normotensive rats and SHR aged eight weeks were studied. Baroreflex was
calculated as the variation of heart rate (HR) divided by the mean arterial pressure (MAP) variation (AHR/AMAP)
tested with a depressor dose of sodium nitroprusside (SNP, 50 pg/kg) and with a pressor dose of phenylephrine
(PHE, 8 pg/kg) in the right femoral venous approach through an inserted cannula in the animals. Significant
differences for p < 0.05.

Results: Baseline MAP (p < 0.0001) and HR (p = 0.0028) was higher in SHR. Bradycardic peak was attenuated in

SHR (p < 0.0001), baroreflex gain tested with PHE was also reduced in the SHR group (p = 0.0012). PHE-induced
increase in MAP was increased in WKY compared to SHR (p = 0.039). Bradycardic reflex responses to intravenous
PHE was decreased in SHR (p < 0.0001).

Conclusion: Eight weeks old SHR already presents impairment of the parasympathetic component of baroreflex.

Introduction
Several factors (neural, humoral, myogenic) are involved
in the onset of hypertension and different animal mod-
els have been used to study this pathology, such as the
renal hypertension model, the DOCA-salt hypertension
model, the neurogenic hypertension model and the
genetic model of hypertension in spontaneously hyper-
tensive rats (SHR) [1]. SHR is a suitable model to study
hypertension development as it is similar to humans
with essential hypertension. These similarities include a
genetic predisposition to high blood pressure with no
specific etiology, increased total peripheral resistance
without volume expansion and similar responses to drug
treatment [1]. Moreover, cardiac hypertrophy, a stress
model of heart disease [2-4] is another feature of SHR
[5].

In cardiovascular physiology, the baroreflex or baror-
eceptor reflex is one of the body’s homeostatic
mechanisms to maintain blood pressure. It provides a
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negative feedback loop in which the elevated blood
pressure reflexively causes blood pressure to decrease;
in contrast, the decreased blood pressure depresses the
baroreflex, causing blood pressure to rise. The system
relies on specialized neurons (baroreceptors) in the
aortic arch, carotid sinuses and elsewhere to monitor
changes in blood pressure and relay them to the brain-
stem. Subsequent changes in blood pressure are
mediated by the autonomic nervous system [6]. Pre-
vious studies related to the development of young SHR
baroreflex function have yielded conflicting results,
when compared to normotensive control rats (Wistar-
Kyoto - WKY) [7]. A study of Lundin et al [8] showed
that 15 weeks old present reduced baroreflex function.
Furthermore, a recent investigation evidenced that 13
weeks old SHR already present impaired baroceptor
reflex with respect to the parasympathetic component
[9]. A precise knowledge of early development damage
to the baroreflex function is essential to understand
hypertension as a disease process [10,11]. Therefore, in
this study we investigated cardiac baroreflex in eight
weeks old SHR.
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Methods

Animals

Eight weeks old SHR (n = 19) and WKY (n = 35) rats
were kept in the Animal Care Unit of our University.
We used higher number of WKY rats in order to have
trustful control values. Rats were housed individually in
plastic cages under standard laboratory conditions. They
were kept under a 12 h light/dark cycle (lights on at
07:00 h) and had free access to food and water. The
Institution’s Animal Ethics Committee authorized hous-
ing conditions and experimental procedures.

Surgical Preparation

One day before the experiments the rats were anesthe-
tized with ketamine (50 mg/kg i.p.) and xilazine (10 mg/
kg i.m.) and a catheter was inserted into the abdominal
aorta through the femoral artery for blood pressure and
heart rate recording. Catheters were made of 4 cm seg-
ments of PE-10 polyethylene (Clay Adams, USA) heat
bound to a 13 ¢cm segment of PE-50 (Clay Adams,
USA). The catheters were tunneled under the skin and
exteriorized at the animal’s dorsum [9,12].

Arterial pressure and heart rate recording

After surgery, the animals were kept in individual cages
used in the transport to the recording room. Approxi-
mately 24 hours after the surgery, animals were allowed
20 min to adapt to the conditions of the experimental
room such as sound and illumination before starting
blood pressure and heart rate recording. The experi-
mental room was acoustically isolated and had constant
background noise produced by an air exhauster. At least
another 15 min period was allowed before beginning
experiments. Pulsatile arterial pressure (PAP) of freely
moving animals was recorded using an HP-7754A pre-
amplifier (Hewlett Packard, USA) and an acquisition
board (MP100A, Biopac Systems Inc, USA) connected
to a computer. Mean arterial pressure (MAP) and heart
rate (HR) values were derived from the PAP recordings
and processed on-line [9,12].

Baroreflex Test

The baroreflex was tested with a pressor dose of 0.1 mL
phenylephrine (PHE-bolus-8 pg/kg IV; Sigma Chemical)
and depressor doses of 0.1 mL sodium nitroprusside
(SNP-bolus-50 pg/kg IV; RBI) [9,12].

Baroreflex evaluation

The baroreflex gain was calculated as the derivation of
HR in function of the MAP variation (AHR/AMAP). We
also analyzed bradycardic and tachycardic peak and HR
range (the difference between bradycardic and tachycar-
dic peak) [9,12].

Statistical Analysis

Values are reported as the means + standard error of
means. HR, MAP, AHR, AMAP and AHR/AMAP were
compared between WKY and SHR. After the
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distributions were evaluated through the Kolmogorov
normality test, the unpaired Student’s T test was used to
verify differences between normal distributions and the
Mann-Whitney test was used to assess differences
between non-parametric distributions. Differences were
considered significant when the probability of a Type I
error was less than 5% (p < 0.05).

Results

As shown in Table 1, we observed significant difference
between SHR and WKY control groups regarding base-
line MAP and HR. Furthermore, the values of bradycar-
dic peak in SHR were higher than WKY rats. Hence,
their bradycardic peak caused by MAP increase was
attenuated. Whereas tachycardic peak was significantly
increased in the same group, however, there was no sig-
nificant difference with respect to HR range. Baroreflex
gain tested with PHE was also significantly reduced in
the SHR group. On the other hand, we did not observed
significant alterations regarding baroreflex gain tested
with SNP.

PHE-induced increase in MAP was slightly but signifi-
cantly increased in WKY rats compared to the SHR
group (p = 0.039). Moreover, bradycardic reflex
responses to intravenous PHE was significantly
decreased in SHR (p < 0.0001) (Figure 1). Figure 2 pre-
sents representative recordings obtained during barore-
flex testing with PHE in conscious WKY and SHR,
showing expressive difference between WKY and SHR
groups in relation to PHE-induced increase in arterial
pressure. The reflex bradycardia in response to PHE was
significantly reduced in SHR.

Intravenous injections of SNP produced a vasodepres-
sor response, which was similar in both groups (p =
0.46). Moreover, tachycardic reflex in response to SNP-
induce decrease in MAP tended to be impaired in SHR
group but it did not reach statistical significance (p =
0.1) (Figure 3). We observe in Figure 4 representative
recordings obtained during baroreflex testing with SNP

Table 1 Baseline level of mean arterial pressure (MAP)
and heart rate (HR), bradycardic and tachycardic peak,
HR range and baroreflex gain (BG) in SHR (n = 19) and
WKY (n = 35) rats

Variable WKY SHR P Value
MAP (mmHg) 1134 £ 166 16289 + 2.7 < 0.0001
HR (bpm) 31334+ 71 350+89 0.0028
Bradycardic Peak (bpm) 2425+ 72 31347 £ 94 < 0.0001
Tachycardic Peak (bpm) 44456 £ 84 490 + 9 0.0013
HR range (bpm) 19803 +£ 812 184.11 + 1335 0.3493
BG (bpm x mmHg™") PHE ~ -13623 + 0.1 -0851 + 009 00012
BG (bpm x mmHg') NaNP  -257 + 018 -2.5 + 0.26 0837

Unpaired Student T test.
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Figure 1 Increase in mean arterial pressure (MAP, mmHg) and decrease in heart rate (HR, bpm) in response to phenylephrine (PHE, 8
ug/kg i.v.) in SHR (n = 19) and WKY (n = 35) rats. *p = 0.039; “p < 0.0001: Different of SHR. Unpaired Student T test.
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Figure 2 Recordings from one WKY and one SHR illustrating reflex bradycardia (top) in response to blood pressure increases. Infusions
were given in bolus. MAP, mean arterial pressure; PAP, pulsatile arterial pressure; HR, heart rate; PHE: phenylephrine.
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in conscious WKY and SHR, and it is noted no expres-
sive difference between the groups. The tachycardic
reflex in response to SNP-induced decrease in arterial
pressure was similar in both groups.

Discussion
Our investigation was undertaken to evaluate barore-
flex function in eight weeks old SHR tested with SNP
and PHE and to verify whether there is any difference
between this study model and WKY rats at the same
age. Our findings demonstrate that at this age baseline
MAP and HR are already increased in SHR, which is
supported by the literature [9,13]. In addition, pressor
responses to PHE were increased in WKY whereas
bradycardic reflex was reduced in SHR. Bradycardic
peak, HR range and the parasympathetic component
of the baroreflex gain were attenuated in SHR. On the
other hand, no significant differences were noted in
relation to SNP-induced decrease in MAP, tachycardic
reflex and baroreflex gain tested with SNP.

The bradycardic peak is an index of maximal para-
sympathetic response to PHE-induced increase in blood
pressure; the tachycardic peak represents the maximal

sympathetic response to SNP-induced decrease in arter-
ial pressure; the HR range index represents the differ-
ence between the upper and lower HR peak and the
derivation of HR in function of MAP variation is an
index of baroreflex gain [14]. We reported that the max-
imal parasympathetic activity is already attenuated in
eight weeks old SHR compared to age-matched control
WKY rats. Our findings provide important evidence for
the recent hypothesis that young SHR already present
reduced parasympathetic function.

Our findings indicate no significant impairment of the
sympathetic component of baroreflex between eight
weeks old SHR and WKY rats at the same age. Great
attention has focused on the role of the sympathetic
activity regarding the onset of hypertension in SHR. Pre-
vious studies have shown that there is elevated sympa-
thetic drive to the vessels in adult SHR and have
suggested that this is relevant in the maintenance of
increased blood pressure [8,15]. It is possible that this
elevation in sympathetic output is not primarily a conse-
quence of changes in either baroceptor reflex [15] or
chemoreflex function but rather is a product of a modi-
fication of the central neural circuitry involved in
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Figure 3 Decrease in mean arterial pressure (MAP, mmHg) and decrease in heart rate (HR, bpm) in response to sodium nitroprusside
(SNP, 50 pg/kg i.v.) in SHR (n = 19) and WKY (n = 35) rats. Unpaired Student T test.
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Figure 4 Recordings from one control WKY and one SHR illustrating reflex tachycardia (top) in response to blood pressure decreases.
Infusions were given in bolus. MAP, mean arterial pressure; PAP, pulsatile arterial pressure; HR, heart rate; SNP: sodium nitroprusside.
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generating the sympathetic output [16]. In view of the
above considerations, we expected the absence of differ-
ence between eight weeks old SHR and age-matched
WKY rats with respect to tachycardic peak, tachycardic
reflex and sympathetic baroreflex gain.

The mechanisms that cause the reduction of the bar-
oreflex function in SHR are not completely understood
[1]. Some studies investigated issues associated to affer-
ent limb, for example, one investigation demonstrated
that the carotid body in the adult SHR is significantly
larger than in normotensive rats [17,18], whereas other
studies indicated that the decreased baroreflex function
in SHR is due to impaired levels of norephinephrine,
epinephrine and dopamine in the carotid body [19,20].
Other researchers studied the central nervous system
[19-21]. It was evidenced that impaired levels of nore-
phinephrine, epinephrine and dopamine into the
medulla oblongata areas that regulate the cardiovascular
system [19-21] may be involved in baroreflex derange-
ment in SHR. Waki et al [22] have shown that endogen-
ous nitric oxide synthase activity in the medulla

oblongata of SHR is increased when compared to WKY;
it plays a major role in the preservation of the hyperten-
sion and decreases the cardiac baroreceptor reflex gain,
which are features of this animal model. Furthermore,
peripherical mechanisms are also associated to attenu-
ated baroreflex development in this strain, there have
been reports that AT1 (angiotensin) receptor densities
are increased in SHR, compared to the levels found in
normotensive control rats [23]. Rossi et al [23] indicated
that endogenous endothelin receptor mechanisms are
involved in the hypertensive state observed in SHR.
Moreover, recent investigations described the impor-
tance of oxidative stress [24] and the small GTPase rho-
quinase [25] during baroreflex function development in
SHR. Bertagnoli et al [24] suggested that exercise train-
ing reduces oxidative stress, which is associated to an
improvement in baroreflex sensitivity in SHR. Earlier
studies that described a significant difference in blood
pressure between WKY and SHR at 3 weeks of age [26]
or at birth [27] were based on the assessment of a few
animals. However, the age at which the baroreflex
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function starts to decrease in SHR has yet to be
demonstrated.

PHE-induced increase in MAP was significantly
enhanced in WKY group compared to SHR group and
bradycardic reflex response to increase in arterial pres-
sure was also significantly increased in WKY rats. We
believe that PHE-induced increase in MAP was reduced
in SHR due their high blood pressure, which disable
them to present high variation of MAP. The reduced
bradycardic reflex response to increase in arterial pres-
sure in SHR is explained by their reduced parasympa-
thetic activity, which decrease the parasympathetic
component of baroreflex [7,16,28]. However, it is not
known yet with which age SHR begins to present preva-
lence of sympathetic activity. A recent study suggests
that the sympathetic activity starts to increase at new-
born stage [16]. On the other hand, no previous investi-
gation demonstrated when SHR begin to show
attenuated bradycardic reflex.

SNP-induced decrease in MAP and tachycardic reflex
was similar between WKY and SHR groups. Those para-
meters were used to calculate the sympathetic baroreflex
gain (baroreflex deactivation, AHR/AMAP). Thus, the
sympathetic baroreflex gain was also similar between
the both groups.

We report that SHR presented impairment of the
parasympathetic component of baroreflex function, asso-
ciated with preservation of sympathetic component. It is
well described that sympathetic activity is increased dur-
ing stress conditions [2-4,29] and SHR is also a model
to study hyperactivity and stress disorders [30,31]. The
imbalance between sympathetic and parasympathetic
components of the baroreflex in SHR is associated to
their sympathetic hyperactivity. Hence, this imbalance
collaborates to hypertension development in this strain
[24,25]. Our findings suggest that at eight weeks old this
discrepancy between sympathetic and parasympathetic
baroreflex gain in SHR probably cooperates to keep
increasing arterial pressure.

These data present relevant information, since cur-
rently baroceptor reflex is largely studied in different
models and strain of rats aiming to prevent hyperten-
sion development in human [9-11], due the fact that
reduced baroreflex function is indicative of cardiovascu-
lar disease [9,14,15]. We recognize the limitations of our
analysis in that we are unable to provide a full barore-
ceptor reflex function curve. However, the baroreflex
gain values obtained here are of physiological relevance,
because they fall around the operating point of this
reflex in an unrestrained conscious rat [12,25],

In conclusion, our investigation indicates that eight
weeks old SHR already presents impairment of the para-
sympathetic component of baroreflex function, while no
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difference was observed regarding the sympathetic
component.
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