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Abstract

Patients with congestive heart failure (CHF) that are not eligible for transplantation have limited therapeutic
options. Stem cell therapy such as autologous bone marrow, mobilized peripheral blood, or purified cells thereof
has been used clinically since 2001. To date over 1000 patients have received cellular therapy as part of rando-
mized trials, with the general consensus being that a moderate but statistically significant benefit occurs. Therefore,
one of the important next steps in the field is optimization. In this paper we discuss three ways to approach this
issue: a) increasing stem cell migration to the heart; b) augmenting stem cell activity; and c) combining existing
stem cell therapies to recapitulate a “therapeutic niche”. We conclude by describing a case report of a heart failure
patient treated with a combination stem cell protocol in an attempt to augment beneficial aspects of cord blood
CD34 cells and mesenchymal-like stem cells.

Introduction
For the approximately 5 million Americans with heart
failure, of which only a small proportion are eligible for
transplantation, regenerative medicine is the only thera-
peutic hope. CHF is caused by many factors, such as
poor perfusion due to atherosclerotic disease, a previous
heart attack, a congenital defect, or previous viral infec-
tion, but the end result is usually similar: a self perpetu-
ating cycle of cardiomyocyte death, inflammatory
mediator release, myocardial compensatory hypertrophy,
and additional cardiomyocyte death, culminating in a
deterioration of ejection fraction. Numerous common
themes are associated with the progression to heart fail-
ure. We will discuss below how stem cell therapy may
act on these factors in a therapeutic sense.

Inhibition of Inflammatory Cascade by
Mesenchymal Stem Cells
Ongoing inflammation is part of the cascade leading to
heart failure. Acute inflammation occurs during infarc-
tion as a result of tissue damage, however, chronic
inflammatory markers are present in both post-infarct
patients, as well as ischemic heart failure patients, and
patients with congenital defects. In general, a positive
correlation between advanced heart failure and levels of
the inflammatory marker C-reactive protein (CRP) has

been reported [1,2]. While CRP elevation is convention-
ally seen as a marker of ongoing inflammation, pro-
duced by the liver in response to cytokines such as IL-1,
IL-6, and TNF-alpha [3], it also plays an active role in
cardiac deterioration through induction of endothelial
dysfunction [4,5], as well as exacerbation of inflamma-
tory processes through activation of complement [6,7].
In addition to CRP, elevated levels of inflammatory cyto-
kines are also noted in CHF patients [8]. Inflammatory
mediators are produced not only as a result of cardio-
myocyte ischemia, but also stretch injury as a result of
hypertrophic accommodation [9,10] and systemic activa-
tion of immune cells including T cells [11] and mono-
cytes [12]. Functionally, inflammatory mediators induce
direct apoptosis of cardiomyocytes. For example TNF-
alpha is known to induce reduction of bcl-2 gene
expression and activate caspase-dependent apoptosis in
cardiac cells at physiological concentrations [13]. Reduc-
tion of TNF-alpha activity using soluble receptors has
demonstrated beneficial effects in animal models of
heart failure [14].
The importance of inflammatory stimuli in heart fail-

ure can be seen in animal models in which activators of
inflammatory agents, such as toll-like receptors (TLRs)
are knocked-out. Generally, TLRs particularly TLR 2
and 4, recognize endogenous “danger signals” associated
with damaged tissue such as extracellular matrix degra-
dation products [15,16], and heat shock proteins [17].
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attenuated in animals lacking TLR-2 [18] or TLR-4 [19].
TLR-2 knockout mice have a substantially better clinical
outcome after experimental infarction, including reduc-
tion in remodeling, wall thinning, and preservation of
LVEF as compared to wild-type controls [20]. Clinically,
expression of TLR-4 is associated with poor prognosis
in post-infarct patients [21]. Thus it appears that inflam-
mation is associated with progression of heart failure.
Supporting an “innate” immune component to heart
failure are studies by Linden’s group demonstrating that
NKT cells play a fundamental role in reperfusion injury,
and that modulation of these cells with adenosine recep-
tor agonists results in cardioprotection [22,23].
Mesenchymal stem cells (MSC) were originally identi-

fied as “stromal cells”, believed to play a role in shaping
the bone marrow microenvironment where hematopoi-
esis occurs [24]. More recently, MSC-like populations
have been isolated from a diverse range of sources such
as adipose [25], heart [26], Wharton’s Jelly [27], dental
pulp [28], peripheral blood [29], cord blood [30], and
more recently menstrual blood [31-33]. In addition to
potent regenerative activities of MSC, which we will
describe below, MSC have potent anti-inflammatory
activities which appear to be present regardless of tissue
of origin [34,35]. Mechanistically, MSC appear to sup-
press inflammation through secretion of anti-inflamma-
tory cytokines such as IL-10 [36], TGF-beta [37], LIF
[38], soluble HLA-G [39] and IL-1 receptor antagonist
[40], expression of immune regulatory enzyme such as
cycloxygenase [41] and indolamine 2,3 deoxygenase [42],
and ability to induce generation of anti-inflammatory T
regulatory cells [43]. The in vivo anti-inflammatory
effects of MSC may be witnessed by success in treating
animal models of immune mediate/inflammatory pathol-
ogies such as multiple sclerosis [44], colitis [45], graft
versus host [46], rheumatoid arthritis [47], and ische-
mia/reperfusion injury [48]. In heart failure, administra-
tion of MSC post infarct has been demonstrated to
decrease production of TNF-alpha and IL-6, but upregu-
late generation of the anti-inflammatory cytokine IL-10,
which correlated with therapeutic benefit [49]. Clinically,
MSC have demonstrated repeatedly potent therapeutic
activity at suppressing graft versus host (GVHD)
[50-55]. Thus one angle in which stem cell therapy may
be useful for heart failure is by suppressing ongoing
self-perpetuating inflammatory cascade.

Inhibition of Death/Repair
Cardiomyocyte death, either by apoptosis [56], or other
types of death such as autophagy and programmed
necrosis is part of the self-perpetuating cascade leading
to heart failure [57,58]. Thus the manipulation of these
death pathways, and upregulation of endogenous repair
mechanisms in the heart could be a possible method of

decreasing the progression to heart failure. For example,
suppression of intracellular apoptotic pathways, as per-
formed by transgenic expression of a dominant negative
form of Mammalian sterile 20-like kinase-1 (Mst1), has
been shown to inhibit post infarct remodeling [59].
Similar protective effects can be attained by transfection
of anti-apoptotic genes such as IAP-2 [60], or growth
factors that inhibit apoptosis [61]. ACE inhibitors have
been postulate to have some beneficial effects through
inhibition of cardiomyocyte apoptosis [62]. Thus one
method of addressing the progression to heart failure
would be identification of methods to prevent ongoing
cell death.
Cell death in the heart causes some level of replace-

ment by resident cardiac stem cells (CSC). These cells
are relatively rare and are believed to respond to signals
associated with damage to the myocardium. Fransioli et
al generated a transgenic mouse expressing GFP under
control of the c-kit promoter. Subsequent to infarct,
increased proliferation of c-kit positive cells was seen in
the myocardium [63]. In humans Urbanek et al exam-
ined 20 human hearts from patients who died after
acute infarct, 20 hearts with chronic infarct that were
transplanted, and 12 control hearts. A population of
cells expressing c-kit, MDR1 and Sca-1 were seen to
enter cell cycle from a basal rate of 1.5% cycling cells in
controls, to 28% and 14% in acute and chronic infarcts,
respectively. The cells expressing the phenotype were
demonstrated to be capable of differentiating into myo-
cyte, smooth muscle, and endothelial cell lineages [64].
Isolated CSC have been successfully expanded ex vivo
and administered via the intracoronary route in rats
post-infarct. Successful transmigration of the CSC across
the endothelium and active regeneration of myocardium
was demonstrated [65]. Thus it appears that a functional
population of stem cells exists in the heart that to some
extent can cause regeneration post injury.
Both HSC and MSC are capable of secreting factors

that on the one hand inhibit apoptosis [66-68] and on
the other hand stimulate activation of CSC [69]. For
example, it was demonstrated that administration of
non-fractionated bone marrow cells containing both cell
populations protects against apoptosis in a doxorubin
induced cardiomyopathy model [70]. Furthermore bone
marrow cells are known to produce HGF [71] and IGF-
1 [72], cytokines that are anti-apoptotic and activate
endogenous cardiomyocyte stem cells [69]. Interestingly,
production of these factors is upregulated in response to
inflammatory mediators associated with heart failure
such as TNF-alpha [68]. Therefore it may be possible
that MSC not only migrate to injured tissue but can
also “sense” inflammatory stimuli such as TNF-alpha
and actually try to grade the level of their therapeutic
response according to the level of damage sensed.
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Another means by which stem cells may repair the
heart is through actually differentiating into new heart
muscle. Reports exist of both hematopoietic [73] and
mesenchymal stem cells [74,75] differentiating into car-
diac-like cells, although this is controversial and some
groups have reported this to be a product of cell fusion
[76]. Additionally, stem cells promote angiogenesis, thus
providing nutrients to ischemic areas and potentially
allowing regeneration [77,78].

Currently Stem Cell Therapy Helps Heart Patients:
Just Not That Well
Cardiac stem cell therapy was first described 2001 when
Strauer et al reported a case in which a 46 year old
patient received autologous bone marrow mononuclear
cells by a percutaneous transluminal catheter placed in
the infarct-related artery. 10 weeks after administration
the transmural infarct area had been reduced from
24.6% to 15.7% of left ventricular circumference, while
ejection fraction, cardiac index and stroke volume had
increased by 20-30% [79]. A subsequent paper in the
same year reported administration of similar cells in 5
patients with advanced ischemia undergoing coronary
artery bypass grafting. Cells were administered intra-
muscularly into areas deemed ungraftable and perfusion
was assessed by imaging. Specific improvement in areas
injected was documented in 3 of the 5 patients. No
ectopic growths or adverse effects were reported at 1
year follow-up [80]. Since these pioneering studies, car-
diac stem cell therapy has been used by numerous
groups for numerous conditions causing heart failure.
These can be broken down into: a) inhibiting post acute
myocardial infarction remodeling; b) stimulation of
regeneration in chronically injured hearts and c) induc-
tion of angiogenesis in coronary artery disease. The
methods of administering stem cells have included the
intracoronary, epicardial, and intravenous routes. Stem
cells used to date are bone marrow mononuclear cells,
mobilized peripheral blood stem cells, purified CD34 or
CD133 cells, autologous mesenchymal stem cells, and
allogeneic bone marrow and placental mesenchymal
stem cells.
To avoid detailed examination, we will discuss several

meta-analysis of ongoing clinical trials performed.
Abdel-Latif et al described 999 patients enrolled 18
independent controlled cardiac trials in which patients
were treatment with either unseparated bone marrow
cells, bone marrow mesenchymal, or mobilized periph-
eral blood [81]. They found that in comparison to con-
trols, there was a statistically significant improvement in
ejection fraction, reduction in infarct size and left ventri-
cular end-systolic volume. Importantly, no safety issues
or serious treatment associated adverse events were
noted. In another such comprehensive review, Martin-

Rendon et al focused on bone marrow therapy for post
acute infarction trials. Of 13 randomized studies con-
ducted, encompassing 811 participants, the authors of
the review stated that more trials are needed to establish
efficacy in terms of clinical endpoints such as death.
However that authors of the review did observe a con-
sistent improvement in LVEF, as well as trends for
decrease in left ventricular end systolic and end diastolic
volumes, and infarct size [82]. Two other meta-analysis
of randomized trials in the area of bone marrow stem
cell infusions also supported the conclusion of safety
and mild but statistically significant improvement in
LVEF [83,84]. These data suggest that stem cell therapy,
both hematopoietic and mesenchymal have clinical
effects in various types of heart failure. Theoretically the
leap between these clinical trials and widespread imple-
mentation is more of a business question than a medical
question. In order to postulate on the future of cardiac
stem cell therapy, we will discuss several possible means
of optimizing existing work.

How to Increase Stem Cell Efficacy?
Attempts at increasing efficacy of stem cells for cardiac
indications have taken several avenues of investigation:
increasing trafficking efficacy; enhancing plasticity of
administered cells; and increasing growth factor produc-
tion. Endowment of these features as been performed by
gene transfection or modification of culture conditions
such as exposure to cytokines or hypoxia. Another inter-
esting approach is addition of chemotactic agents to the
area of tissue injury to enhance trafficking. These
approaches will be discussed below.

Making Stem Cells Home Better
Mesenchymal stem cells are known to migrate to
injured tissue and hypoxic tissue through expression of
receptors such as CD44 [85-87] and CXCR-4 [88],
respectively. One method of increase efficacy of these
cells is to increase their ability to traffic to where they
are needed. This has been performed using various
approaches. Cheng et al used retroviral transfection to
overexpress CXCR-4 on rat bone marrow derived MSC.
These cells were functionally competent as judged by
similar growth profiles and differentiation ability when
compared to control transfected MSC. Intravenous
administration of the modified cells in a rat model of
myocardial infarction led to a significant improvement
in migration to the area of infarct, and LVEF, as well as
decreased wall thinning and fibrosis when compared to
animals receiving control MSC [89]. Although many
fears exist surrounding genetically modified cells, cur-
rent advances in delivery vectors have for increased
safety features which may allow such modified MSC to
become a clinical reality [90]. An alternative and
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perhaps easier way of inducing MSC to expression
CXCR-4 is simply “pulsing” them with a brief period of
hypoxia [91], or exposure to cytokines such as SCF, IL-
6, Flt-3 ligand, HGF and IL-3 [92].
Instead of increasing affinity of the stem cells to the

chemoattractant, the other way to achieve the same
result is to increase the concentration of the chemoat-
tractant. One way is to provide an exogenous depot of
angiogenic cytokines in proximity to the area where
stem cell migration is desired. Tang et al administered a
SDF-1 expressing plasmid into the ischemic border zone
2 weeks after induction of infarct in BALB/c mice. To
determine whether the expressed chemoattractant actu-
ally caused stem cell homing, syngeneic labeled bone
marrow cells were intravenously injected 3 days after
SDF-1 plasmid administration. A significantly increased
number of labeled cells was observed in the group
receiving the plasmid, in the area whether the plasmid
was injected [93]. These data suggest that it is feasible
to reproduce mobilization induced by infarcts through
the administration of homologous cytokines. However,
the authors did not describe therapeutic benefit. In
another experiment, a more clinically-translatable
approach was taken. Fibrin glue, fibrinogen and throm-
bin mixed at the point of care, is used in surgery to con-
trol bleeding [94]. Zhang et al used pegylation
technology to covalently bind recombinant SDF-1 to
fibrinogen and demonstrated that subsequent to mixing
with thrombin, the resultant “patch” could serve as a
means of controlled release of SDF-1. The patch was
placed on the infarct area of the left ventricle of mice
after ligation of the left anterior descending coronary
artery. In comparison to control mice receiving a fibrin
patch lacking SDF-1, an increase in cells with a stem
cell antigen and c-kit positive phenotype was observed
in the experimental group. Additionally, at completion
of experiment, an increased LVEF was observed in the
treatment mice [95]. Since endogenous cardiac stem
cells also express a similar phenotype [96], and cell
labeling was not performed, it is difficult to determine
whether the therapeutic effect was mediated by mobili-
zation of bone marrow progenitors or cardiac resident
stem cells. One interesting way of enhancing activity of
such a localization of chemoattractants is to concur-
rently administer exogenous stem cells, or to mobilize
endogenous bone marrow stem cells. In fact, the latter
was performed in a study where fibroblasts expressing
SDF-1 were injected into the hindlimbs of mice after
femoral ligation. A synergistic induction of angiogenesis
was detected when endogenous bone marrow derived
stem cells were mobilized with G-CSF [97]. Other clini-
cally used methods may be implemented to enhance
stem cell trafficking. For example, erythropoietin (EPO),
in addition to its well-known anti-apoptotic effects on

cardiomyocytes [98], has actually been shown to stimu-
late responsiveness of bone marrow derived stem cells
to SDF-1 when administered in vivo [99]. A recent
paper described the nutraceutical Stem-Kine as the first
food supplement capable of augmenting endogenous cir-
culating stem cells, this approach may spare patients
potential adverse effects associated with cytokine mobili-
zation [100]. The procedure of transmyocardial revascu-
larization has been demonstrated to synergize with
endothelial progenitor cells for augmentation of neoan-
giogenesis [101], it remains an open question whether
other stem cell therapies may synergize with this ther-
apy. Combination therapies of this sort will be interest-
ing to evaluate clinically, especially when the various
components are already approved.

Revitalize Stem Cells
Once we can make sure that stem cells arrive to the site
where they are needed to stimulate regeneration, how
do we know that they can do this effectively? For exam-
ple, we do know that in general, stem cell activity
diminishes with age [102], and specifically, in patients
with cardiovascular risk factors stem cell activity is addi-
tionally suppressed as compared to healthy age-matched
controls [103]. There are several issues that must be
taken into consideration. Perhaps, most importantly, is
how do the stem cells mediate their therapeutic effects?
On the one hand, people will state that adult stem cells,
such as hematopoietic [104] and even in some cases
mesenchymal stem cells [105], do not differentiate into
functional cardiomyocytes, so therefore therapy with
these cells is a futile endeavor. As we discussed above,
efficacy of cardiac stem cell therapy does not rely on
cell replacement but could be, and most likely is,
mediated by trophic, angiogenic, anti-inflammatory and
anti-apoptotic effects. Regardless of this, the concept of
“revitalizing” an adult stem cell so to be able to actually
replace cardiac cells is very exciting.
One method of such “revitalization” is involves mak-

ing the stem cells take a more primitive, embryonic
stem cell-like phenotype. It is known that the more dif-
ferentiated cells become, the less plasticity they have,
and the more restricted epigenetically, they become.
Perhaps this was associated with the reason why DNA
methyltransferase inhibitors such as 5-azacytidine were
initially added to stem cells before implantation into
infracted hearts [106,107]. Other agents that act epigen-
etically, such as the histone deacetylase inhibitor val-
proic acid have been demonstrated to enhance
hematopoietic stem cell self renewal capacity in vitro
[108,109], and have a positive effect on post infarct
remodeling in vivo, although it is not clear whether
stem cell activation is implicated [110]. Instead of using
agents such as these that upregulate factors associated
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with pluripotency such as Nanog [111], an alternative
approach is to simply transfect the cells with such
genes. For example Go et al transfected bone marrow
derived MSC with Nanog and reported superior expan-
sion potential and ability to differentiate as compared to
control transfected cells [112]. Transfection of such
“retrodifferentiation” genes is particularly exciting in
light of the recent discovery that fibroblasts can be
induced to pluripotency through introduction of the
pluripotency genes Oct3/4, Sox2, c-Myc, and Klf4 in
mice [113] and humans [114]. These “inducible pluripo-
tent stem cells” (iPS) appear to be functional, not only
by gene transcription profile, but also ability to reconsti-
tute animals hematopoietically [115]. Theoretically, it
would make sense that retrodifferentiation of an adult
stem cell into an iPS would be easier than a skin fibro-
blast. Indeed, Kim et al demonstrated that in order to
derived iPS cells from neural stem cells, only the factors
Oct-4 and klf-4 or c-Myc are needed [116]. Further-
more, newer transfection methods of generating iPS
through non-retroviral means have been reported, giv-
ing the possibility of generating clinically applicable
therapies from these cells [117]. Unfortunately, carcino-
genesis associated with the viral vectors is not the main
limitation. It is known in general that ES cells are carci-
nogenic [118]. Additionally, the very transcriptional pro-
file associated with cancer stem cells appears to be
related to that of pluripotent cells, regardless if they are
generated by iPS or from ES cells [119].
Thus one way of increasing potency of MSC-based

therapy is through induction of such a “rejuvenation”
unfortunately, too much rejuvenation leads to the possi-
bility of carcinogenesis, and additionally may have impli-
cations on ability of the cells to evade immune
responsiveness and/or migration to the area of injury.
For example, it is known that embryonic stem cells are
hypoimmunogenic, as seen by weak ability to stimulate
allogeneic lymphocyte proliferation [120]. However it
remains an open question whether ES cells can actively
suppress ongoing immune responses as is the case with
MSC both in animal models [45] and clinically
[121,122]. In terms of migratory ability, it is known that
functionally various adult stem cells play a protective
role in the physiological response to injury. Although
the effects in clinical situations are minor, there is sug-
gestive evidence, for example in stroke patients that a
correlation between endogenous stem cell mobilization
and positive outcome exists [123,124]. While in cardiac
infarct cases we do know that mobilization occurs [125],
but correlation with infarct recovery have not been
made. Regardless, the question of what stage of differen-
tiation the best cell population is for treatment of car-
diac indications remains unclear.

Stem Cell Combinations
Given that we do not know the best stage of differentia-
tion to administer the stem cells, as well as the various
drawbacks of transfection and reprogramming
approaches, one possible way of advancing efficacy of
stem cell therapy would be to combine various stem cell
types that we know have trophic activity. One interest-
ing combination would be the use of CD34 cells, which
are primarily hematopoietic, but also angiogenic,
together with allogeneic mesenchymal stem cells, which
have trophic, angiogenic, and potent anti-inflammatory
potential. The rationale for combining these two
approaches come from several perspectives: a) after tis-
sue injury both mesenchymal [85,126,127] and hemato-
poietic stem cells [128-130] are mobilized thus
potentially both cells may have therapeutic synergistic
activity in a physiological sense; b) In vivo MSC provide
a microenvironment for CD34 stem cells both embryo-
nically [131], and postnatally [132], in vitro MSC pro-
mote expansion of CD34 stem cells [133,134]; and c)
animal models suggest synergy of function [135].
We have previously published data from an end-stage

patient suffering from dilated cardiomyopathy which
underwent a profound improvement in ejection fraction
after receiving a combination of cord blood expanded
CD34 cells and placental matrix derived mesenchymal
stem cells [136]. In the current case report we describe
a patient with ischemia cardiomyopathy who received a
combination of allogeneic CD34 cells and endometrial
regenerative cells (ERC), a MSC-like population which
has previously been demonstrated to possess higher
growth factor production ability as compared to control
MSC cells [31], as well as in immunomodulatory and in
vivo angiogenic activity [137]. Furthermore, ERC-like
cells have been reported by independent groups to pos-
sess an increased propensity towards muscular [138,139]
and cardiac differentiation [140], as compared with
other stem cell types. Animal safety studies have
demonstrated that ERC do not cause tumors in immune
competent animals and actively suppress glioma growth
in vivo [141]. Feasibility-based clinical investigations
have demonstrated ERC do not cause abnormal growths
subsequent to intrathecal or intravenous administration
[142].

Case Report
Endometrial Regenerative Cells (ERC) were provided
with a certificate of analysis describing purity (> 90%
expression of CD90 and CD105, and < 5% expression
of CD34 and CD45) and sterility (lack of adventitious
contaminants). ERC and cord blood CD34 cells were
generated described in our previous publications
[136,143].
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Patient was born January 7th, 1933. At 74 the patient
presented with congestive heart failure and an ejection
fraction of 25-30%. Risks associated with stem cell ther-
apy and specifically with the combination of two stem
cell products, of which neither one has been approved
by the FDA, or EMEA for general use were explained to
the patient in detail. After signing informed consent and
being accepted by an independent oversight committee
for the experimental treatment, the patient was adminis-
tered ERCs. On days 1,2,3,4 and 7 the patient received
intravenous administration of 3 million ERC (total num-
ber 15 million). CD34 cells were administered as fol-
lows: day 1 (4.5 million); day 2 (3 million); day 3, (2.3 ×
10(5)); day 4 (1.5 million); and day 7 (1.5 million). Last
injection was performed November 19th, 2007. Injection
was performed by intravenous drip using USP-grade sal-
ine and autologous heat inactivated serum (10%). Injec-
tion site and general condition of the patient was
monitored for 3 hours after the first administration.
Before subsequent injections the injection site was
examined for swelling or inflammation and the general
state of the patient was examined. For all injections no
evident reactions were noted.
Echocardiogram performed June 27, 2008, August 11,

2008, and Oct 1st 2009 demonstrated that the patient’s
ejection fraction was approximately 40%. The Minnesota
Living with Heart Failure Questionnaire score dropped
from 97 pretreatment to a value of 2 onFebruary 2009.
Reduction of Pro-BNP was observed after treatment:
Pre-treatment levels of Pro-BNP were 1946 on Septem-
ber 5th, 2007, 1225 on January 11, 2008, and 788.1 on
Sept 28, 2009. The patient has other chemical and meta-
bolic testing to further analyze his heart failure. Com-
plete blood count, serum biochemistry, PSA, CEA, alpha
fetoprotein, fecal occult blood test revealed no abnorm-
alities in comparison to reference ranges. This was simi-
lar to baseline. Radiological examination of the chest PA
and Lateral x-ray did not reveal any abnormalities. Phy-
sical examination of the patient, with special emphasis
on the injection site revealed no masses, inflammation
or abnormalities. This patient continues to do well.

Conclusion
Adult stem cell therapy for cardiac conditions has
reached the point where new directions are needed to
optimize effects. Possibilities of next-generation
approaches include the use of “in vitro supercharged”
cells, combinations of cells and cytokines, and of course
combination of cellular therapies. Currently the use of
endometrial regenerative cells as a possible substitute
for bone marrow mesenchymal stem cells is being evalu-
ated by our group including novel methods to image the
cells and the changes in heart function.
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