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Abstract

The endocannabinoid anandamide (ANA) participates in the control of cell death inducing the formation of
apoptotic bodies and DNA fragmentation. The aim of this study was to evaluate whether the ANA degrading
enzyme, the fatty acid amide hydrolase (FAAH), would induce cellular death. Experiments were performed in
cerebellar granule neurons cultured with the FAAH inhibitor, URB597 (25, 50 or 100 nM) as well as endogenous
lipids such as oleoylethanolamide (OEA) or palmitoylethanolamide (PEA) and cellular viability was determined by
MTT test. Neurons cultured with URB597 (25, 50 or 100 nM) displayed a decrease in cellular viability. In addition, if
cultured with OEA (25 nM) or PEA (100 nM), cellular death was found. These results further suggest that URB597,
OEA or PEA promote cellular death.

Introduction
Endogenous lipids have been the focus of interest since
they display some biological functions. Among these
molecules are oleoylethanolamide (OEA), palmitoyletha-
nolamide (PEA) [1-3] as well as the endogenous agonist
for cannabinoid receptors, arachidonoylethanolamine,
also named anandamide (ANA) [4].
OEA is a naturally occurring fatty acid compound that

modulates several neurobiological functions including sati-
ety [3,5,6], displays diurnal fluctuations in several brain
areas [7], and it has been related with fat ingestion [8]. On
the other hand, PEA acts as an antinociceptive molecule
[1,9] and displays anti-inflammatory properties [10].
The hydrolysis of ANA, OEA and PEA is catalyzed by

an intracellular enzyme defined as fatty acid amide
hydrolase (FAAH), for a comprehensive review see
[11,12]. The activity of FAAH has been studied using
highly selective inhibitors [13,14], including URB597
[3,5,6,15-17].
Pharmacologically ANA mimics many of the effects

caused by Δ9- tetrahydrocannabinol, the primary psy-
choactive molecule of marijuana [18] on diverse

behaviors such as memory disruption, hypolocomotion,
hyperphagia, and sleep, for a comprehensive review see
[19]. Although it has been reported that ANA induces
cellular death [20-22], there is no solid evidence about
the neurobiological role in cellular viability of URB597
as well as OEA or PEA. Thus, on the basis of these pre-
vious studies, we investigated whether these compounds
would promote cellular death.

Materials and methods
Animals
Experiments were performed following the guidelines on
the Ethical Use of Animals from the Mexican Institutes
of Health Research (DOF. NOM-062-Z00-1999) as well
as the National Institutes of Health Guide for the Care
and Use of Laboratory Animals (NIH publication No. 80-
23, revised 1996) and protocol was approved by the
Committee on the Ethics of Animal Experiments of our
Institutions. All efforts were made to minimize animal
stress and suffering. C57B16/J mice (7-10 days old) of
either gender were housed at constant temperature (21 ±
1°C) under controlled light-dark cycle (lights on: 07:00-
19:00 h). Food and water were provided ad libitum.

Compounds
Fetal calf serum and penicillin/streptomycin were
obtained from GIBCO (Grand Island, NY, USA). Poly-
L-lysine hydrobromide (molecular weight > 130,000),
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trypsin, DNAse, MTT (3-(4, 4dimethylthiazol-2-yl)-2,5-
diphenyletrazolium bromide), cytosine b-D-arabino-fur-
osamide were obtained from Sigma (St. Louis, Mo.
USA). URB597, OEA, and PEA were kindly provided by
Professor Daniele Piomelli (University of California,
Irvine. USA). All drugs were dissolved in vehicle (poly-
ethylglycol (PEG)/saline; 5:95 v/v). The doses (10, 25, 50
or 100 nM of each compound) were chosen from pilot
experiments and they were administered randomly to
the cultures.

Cellular culture
Cerebellar granule neurons were obtained as previously
described [23,24]. Briefly, animals were sacrificed by
decapitation during the lights-on period (10:00 h) and
the brain was rapidly removed and placed into a plastic
matrix immersed in ice-cold with artificial cerebrospinal
fluid. The cerebellum was collected (time collection < 5
min) and dissociated cell suspensions of cerebella were
plated at a density of 265,000 cells/cm2 in plastic dishes
coated previously with poly-L-lysine (5 μg/mL) or in
plastic dishes with coverslips using poly-L-lysine 25 μM.
Culture medium contained basal Eagle’s medium sup-
plemented with 10% (v/v) heat inactivated fetal calf
serum, 2 mM glutamine, 25 mM KCl (K25), D-(+)-Glu-
cose (7.5 mM), 50 μg/mL streptomycin, and 50 U/mL
penicillin. Culture dishes were incubated at 37°C in a
humidified 5% CO2/95% air atmosphere, and cytosine
arabinoside (10 μM). Control group consisted in cells
incubated only with culture media whereas vehicle
group was the culture with free-serum conditions and
the respective solvent (vehicle). Separately, cells were
treated with URB597, OEA or PEA (10, 25, 50 or 100
nM) during 24 h (incubation period).

Analysis of cellular viability
To describe the cellular death induced by URB597, OEA
or PEA, cultures were analyzed 24 h after drug treat-
ments. Cellular viability was performed by methyl thia-
zolyl tetrazolium (MTT) assay [23,24] which evaluates
the metabolic reduction of MTT active neurons quanti-
fied by the measuring of the formation of a dark blue
formazan product. Briefly, cerebella neurons were plated
in Petri multidishes with BME 10% fetal bovine serum
and 1% penicillin/streptomycin. The neurons were
serum deprived overnight and then stimulated with the
respective treatments at 24 h. To study how the drugs
affect the cellular viability, cells were incubated with
MTT (40 μg/mL) for 15 min at 37°C and after medium
removal, formed formazan blue was extracted with
DMSO and quantified spectrophotometrically at 570 nm
as described [25,26]. Under bright field, a photomicro-
graph was taken by one person blind to the experiment,
and the cellular death index was calculated by the ratio

of the number of dead neurons to the total number of
cells in each field. Additionally, swollen soma and frag-
mented extensions were considered as a parameter to
determinate cellular death. The final calculation was
pooled from the data produced from four experiments
in triplicate. Finally, to avoid experimental bias, at the
end of the studies the code was broken to reveal the
treatments of each MTT test.

Statistical analysis
The data were expressed as mean ± S.E.M. The signifi-
cance of differences between groups was evaluated by
one-way analysis of variance (ANOVA) followed by a
Scheffé-Test for multiple comparisons. Analyses were
done with Statview Software (version 5.0.1; SAS Insti-
tute, Cary, NC. USA) and differences were considered
significant if p < 0.05.

Results
The effects of URB597 on cellular death
Since no differences were observed between control and
vehicle groups only the photomicrograph of control
group was included in the results. After 24 h of incuba-
tion, control group (Figure 1A) showed a confluent
layer of cells with bright-phase cell bodies and spreading
extensions. Upon exposure to different concentrations
of URB597 (Figure 1B [10 nM], C [25 nM], D [50 nM],
E [100 nM]), a decrease in cell viability in the MTT
assay was observed. Importantly, the remaining cells
revealed swollen soma and fragmented extensions. To
determine if URB597 was diminishing the number of
cerebellar granule neurons, we counted the cells after
the pharmacological challenge. Statistical analysis
showed significant effects were found in URB597-treated
groups (ANOVA; F(5,54)= 3,69, p < 0.0001). Post-hoc
analysis showed that URB597 (25, 50 or 100 nM) pro-
duced a significant decrease in the number of cerebellar
granule neurons (Scheffé-Test: Control/Vehicle vs. URB-
25 (25 nM), p < 0.0001; Control/Vehicle vs. URB-50 (50
nM), p < 0.0001; Control/Vehicle vs. URB-100 (100
nM), p < 0.0001; Figure 1F). We observed 50% cell
death diminution after 24 h of incubation with URB597
(at the highest dose). This result is consistent with pre-
vious observations reported by others [27].

The effects of OEA on cellular death
Next, we analyzed the cellular viability in cerebellar
granule neurons cultured during 24 h with different
concentrations of OEA (10, 25, 50 or 100 nM). As
shown in photomicrograph, control group (Figure 2A)
showed that neurons had long processes with a bipolar
morphology and round shape. In contrast, a diminution
in neurites as well as swollen soma and fragmented
extensions were observed after the treatment of OEA
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(Figure 2B [10 nM], C [25 nM], D [50 nM], E [100
nM]). To determine the number of cerebellar granule
neurons after the treatments, we performed a count of
the cells after the pharmacological challenge. We found
that incubation of OEA (50 nM) decreased significantly
the number of cerebellar granule neurons (ANOVA; F
(5,54)= 5, 88, p < 0.0001; post-hoc analysis, Scheffé-Test:
Control/Vehicle vs. OEA-50 (50 nM), p < 0.0001; Figure
2F). After 24 h, more that 20% of cerebellar granule
neurons underwent cell death with the treatment of
OEA (50 nM). It is worthy to mention that we found a
resistance to cell death if cultured with OEA at 100 nM.

The effects of PEA on cellular death
To investigate whether PEA would induce cellular death,
we analyzed cellular viability in cerebellar granule neu-
rons after the treatment of PEA at different concentra-
tions (10, 25, 50 or 100 nM). It was found that neurons
in the control group (Figure 3A) were densely packed

with healthy morphology whereas neurons incubated
with PEA showed a diminution in cellular viability in
the MTT assay. As shown in microphotography, PEA
induced swollen soma and fragmented extensions (Fig-
ure 3B [10 nM], C [25 nM], D [50 nM], E [100 nM]).
Next, it was determined the number of cerebellar gran-
ule neurons after the incubation with PEA. Statistical
diminutions were found in the number of cerebellar
granule neurons at the highest dose used of PEA (100
nM; ANOVA; F(5,54)= 9, 42, p < 0.0001, post-hoc analy-
sis, Scheffé-Test: Control/Vehicle vs. PEA-100 (100 nM),
p < 0.0001; Figure 3F).

Discussion
The present study shows that inhibition of the FAAH
activity using URB597 induces cellular death. Although
the molecular mechanism underlying the observed
results remain unknown, we can hypothesize from this
study two mechanisms: Cellular death promoted by

Figure 1 Photomicrograph of cerebellar granule cells incubated only with culture media (control) or treated with URB597 at 10, 25,
50 or 100 nM (Panels A-E, respectively). The cellular viability (Panel F) was determined by MTT and data is presented as mean ± SEM (%).
Scale bar, 100 μm (* vs control/vehicle, p < 0.05).
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URB597 could be related with the endogenous accumu-
lation of ANA as described by others [28,29]. In this
regard, Fegley and colleagues reported that the adminis-
tration of URB597 increases the endogenous levels of
ANA [30], and it has been suggested that this endocan-
nabinoid promotes cellular death as reported previously
[20,22,31-34]. Nevertheless, the results in our study
using URB597 confirm similar findings. For example,
Siegmund and colleagues showed that hepatocytes pre-
treated with URB597 displayed an enhancement in
ANA-induced reactive oxygen species formation and
they were susceptible to ANA-mediated death [27].
The second route of action that may be linked in the

effects observed in our report is related to the MAP
Kinase activity. The cellular death caused by URB597
may involve the activation of this intracellular cascade,
suggested as an important key element in apoptotic
mechanisms [20-22]. Experimental evidence suggest that
MAP Kinase is activated by endocannabinoids [35].

Further experiments aimed to describe the effects of
URB597 on activity of MAP Kinase should be addressed.
We also found that OEA diminished neuronal survi-

val. The present results are consistent with previous
reports. For example, Ambrosini and colleagues reported
that this lipid (at 2.5 nM) significantly reduces in vitro
DNA strand breaks both in fertile and infertile subjects
[36]. Since OEA is able to activate Ras-Erk cascade [37],
one might think that this pathway may participate in
the molecular mechanism of OEA to induce cellular
death. It is known that Raf-1 and MEK/ERK are compo-
nents of the Ras/ERK-dependent signal transduction
cascade regulating cellular apoptosis [38,39]. However,
the neurobiological role of Ras/ERK signal under the
influence of OEA should be determined to fully under-
stand the effects described in this report.
The final compound examined, PEA, showed a signifi-

cant diminution in the number of cerebellar granule
neurons (only at the highest dose). In agreement with

Figure 2 Photomicrograph of cerebellar granule cells incubated only with culture media (control) or treated with OEA at 10, 25, 50 or
100 nM (Panels A-E, respectively), the remaining cells revealed swollen soma and fragmented extensions. The cellular viability (Panel F)
was determined by MTT and data is presented as mean ± SEM (%). Scale bar, 100 μm (* vs control/vehicle, p < 0.05).
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this observation, Franklin et al. (2003) showed that PEA
(at a dose of 100 μM) increased cellular death [40].
These results suggest that PEA might be modulating
cellular viability. Despite that it is unknown the neuro-
biological mechanism activated by PEA to induce cellu-
lar death, Di Marzo et al. (2001) have proposed that
PEA may act in synergy with ANA to potentiate the
effects induced by this endocannabinoid [41]. In this
regard, it has been described that PEA enhances the
anti-proliferative effects of ANA on human breast can-
cer cells by inhibiting the expression of FAAH.
Although we did not describe in the current report a

mechanism of action of URB597, OEA or PEA on cellu-
lar death, further studies aimed to test the role of the
endocannabinoid system should be addressed. It would
be worthy to test whether SR141716A, a selective CB1
cannabinoid receptor antagonist, is able to block the
effects caused by URB597, OEA or PEA in cellular
viability.

In conclusion, our studies describe that URB597, OEA
or PEA induce cellular death in cerebellar granule neu-
rons. The present results enhance the investigation
about the neurobiological properties of these com-
pounds on apoptosis.
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