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Abstract

Background: Alterations of sleep duration and architecture have been associated with increased morbidity and
mortality, and specifically linked to chronic cardiovascular disease and psychiatric disorders, such as type 2 diabetes
or depression. Measurement of sleep quality to assist in the diagnosis or treatment of these diseases is not routinely
performed due to the complexity and cost of conventional methods. The objective of this study is to cross-validate
the accuracy of an automated algorithm that stages sleep from the EEG signal acquired with sensors that can be
self-applied by patients.

Methods: This retrospective study design included polymsomnographic records from 19 presumably healthy
individuals and 68 patients suspected of having sleep disordered breathing (SDB). Epoch-by-epoch comparisons
were made between manual vs. automated sleeps staging (from the left and right electrooculogram) with the
impact of SDB severity considered.

Results: Both scoring methods reported decreased Stage N3 and REM and increased wake and N1 as SDB severity
increased. Inter-class correlations and Kappa coefficients were strong across all stages except N1. Agreements across
all epochs for subjects with normal and patients with mild SDB were: wake =80%, N1=25%, N2 =78%, N3 =84%
and REM =75%. Agreement decreased in patients with moderate and severe SDB amounting to: wake =71%,
NT=30%, N2=71%, N3=65%, and REM =67%. Differences in detection of sleep onset were within three-minutes in
48% of the subjects and 10-min in 73 % of the cases and were not impacted by SDB severity. Automated staging
slightly underestimated total sleep time but this difference had a limited impact on the respiratory disturbance
indexes.

Conclusions: This cross-validation study demonstrated that measurement of sleep architecture obtained from a
single-channel of forehead EEG can be equivalent to between-rater agreement using conventional manual scoring.
The accuracies obtained with automated sleep staging were inversely proportional to SDB severity at a rate similar
to manual scorers. These results suggest that the automated sleep staging used in this study may prove useful in
evaluating sleep quality in patients with chronic diseases.

Background

Adequate amounts and quality of sleep are essential for
health and well-being. Both short and long sleep durations
are significant predictors of morbidity and all-cause
mortality [1]. Short duration sleep (< 6 hours per night)
represents an independent risk factor for development of
type 2 diabetes [2-7], central obesity (in women) [8] and
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psychiatric disorders such as depression, attention deficit
and substance abuse [9-14]. A lack of certain phases of
sleep may have adverse effects on health in spite of the
seemingly adequate sleep duration. For example, an insuf-
ficient amount of slow wave sleep has been associated with
hypertension [15], type 2 diabetes [3,16] and increased risk
of obesity [17], while anomalies of rapid eye movement
(REM) sleep have been linked to dementia, depression and
post-traumatic stress disorder (PTSD) [18-20].
Conventionally, the assessment of sleep architecture has
been done in dedicated facilities and relied on multichannel
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polysomnography (PSG) and manual scoring of the data.
PSG provides comprehensive information about sleep dur-
ation and architecture but it is too expensive and cumber-
some for large-scale or repeated-measures evaluations.
Manual scoring is a laborious practice even with the use of
software to assist with scorers [21], and furthermore it is
subject to considerable disagreement between experts in re-
gard to assigned sleep stages, cumulative measures of sleep
structure and indices of respiratory or other disturbances
[22-24]. On the other hand, inexpensive tools that are vali-
dated and applicable on a large scale (i.e., wrist actigraphy
and sleep diaries) provide only rudimentary estimates of
total sleep time without any information about the quality
of periods self-reported or labeled by actigraphy as sleep.
As a result, sleep is rarely evaluated in patients with suspect
or confirmed chronic disorders where its assessment might
provide important clues for diagnosis or treatment.

Recent advances in electronic technologies and sensor
interfaces have allowed for a significant reduction of the
size and weight of recording equipment and made its self-
application feasible. This would allow assessment of sleep
quality in the home where a patient’s sleep patterns can be
objectively quantified in their normal sleeping environ-
ment using wearable recorders with only few EEG electro-
des below the hairline. A compelling advantage of such an
approach is that adhesive ECG-type electrodes or pads
made from conductive fabrics can be easily applied to the
forehead or around the eyes by patients following a simple
set of instructions. In recent years several algorithms for
automated staging of sleep from a limited number of
channels have been introduced and successfully validated
in samples composed mostly or exclusively of healthy
volunteers [25-27]. However similar levels of scoring ac-
curacy need to be demonstrated in relevant clinical popu-
lations in order to support routine adoption.

This paper presents validation of a novel algorithm
that stages sleep in conventional 30-second epochs from
a single EEG channel. The algorithm was developed and
initially validated in healthy subjects using a differential
recording from two forehead electrodes (Fpl-Fp2) [28].
In this study the validation has been extended to a clin-
ical population composed mostly of subjects evaluated
with laboratory PSG for suspected sleep-disordered
breathing. As the frontopolar electrodes are not rou-
tinely applied during such evaluations, the differential
input for the algorithm was derived from the left and
right electrooculographic (EOG) channels.

Methods

Subjects

Eighty-seven nocturnal polysomnographic records selected
for this study were acquired under IRB review at the New
York University Sleep Disorders Center. Prior to further
stratification by sleep disordered breathing severity, the
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data set included 19 subjects presumed to be healthy and
the balance suspected of having sleep disordered breathing
(SDB). The ethnic profile included 52% white, 10% Asian,
9% African American, 9% Hispanic/Latino, and 20%
unreported.

Manual scoring

The montage used for manual sleep staging provided
electro-encephalographic recordings from C3, C4, O1, O2
and Fz (referenced to the linked mastoids), left and right
electrooculography (LEOG and REOG) and submental
electromyography (EMGQG). One of several sleep technicians
working in the laboratory during a one-year period begin-
ning in March 2005 manually scoring each study using the
criteria developed by Rechtschaffen and Kales (R&K) [29]
as incorporated into their clinical scoring protocols. The
Apnea/Hypopnea Index (AHI) was based on 10-second
cessation in breathing or a 30% reduction in airflow
coupled to a 4% decrease in oxyhemoglobin saturation.
The Respiratory Disturbance Index (RDI) was based on
the Chicago research criteria [30]. Subjects were stratified
into four SDB severity categories: normal (RDI <10), mild
(RDI 10 — 20), moderate (RDI 21 — 40) or severe (RDI
> 40) sleep disordered breathing (Table 1).

Automated scoring

Automated sleep staging was performed by the algo-
rithm previously described [28] using a differential EEG
recording (Fpl- Fpl) and validated against the 2007
AASM scoring rules [31] in rested and sleep deprived
healthy individuals. The algorithm (Figure 1) first com-
putes power estimates in the standard EEG frequency
bands (delta, theta, alpha, sigma, beta) and extracts the
eye movements, EMQG, arousals and sleep spindles, and
then feeds the power estimates, their ratios and the
number of spindles and arousals in the epoch to a hier-
archical decision tree that classifies each 30-second
epoch into one of the five stages: Wake, REM sleep,
NREM stage N1 (N1), NREM stage 2 (N2) and NREM
stage 3 (N3 or slow-wave sleep).

Minor modifications have been made to the algorithm
prior to its application to this study’s data. As the fronto-
polar differential EEG derivation was not available in this
study, the algorithm was applied to the differential signal
derived by subtracting the left EOG from the right EOG

Table 1 Distribution of group data based on sleep
disordered breathing severity

Normal Mild Moderate  Severe
n (% male) 24 (42) 21 (86) 18 (83) 24 (83)
Age, mean yrs+SD  39+£146  41+£114 53+158 47121
AHI, mean +SD 1£13 4+27 14+£87 57+244
RDI, mean +SD 6+23 15+3.1 31+6.7 71+£193
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channel. As the filters in the sleep staging algorithms are
designed for a sampling rate of 256 Hz, the difference
EOG signal, originally available at 128 Hz, was subse-
quently re-sampled at 256 Hz using linear interpolation.
Finally, the EMG power threshold was reduced by two
thirds and the BEI threshold was scaled up by a factor of
three in order to reflect the reduced width of the effective
EMG band available in this study (32—64 Hz as compared
to 32-128 Hz in the original data set [28]). The validity of
these modifications was verified by an ad-hoc analysis of
19 records from the healthy subjects and 18 studies with
manually staged total sleep time less than 3.5 hours. It is
important, however, to stress that the vast majority of the
algorithm’s thresholds (21 out of 23) were not changed.

Analyses

Inter-class correlations were used to assess concordance
across subjects between the total time spent in each of
the stages as determined by manual vs. auto-scoring.
Cross-tabulations were made between the manual and
automated scoring for all epochs, and the overall and
stage-specific percentage agreement and Kappa coeffi-
cients were calculated. Based on similarities in the scor-
ing accuracy, the data from the subjects with normal
and patients with mild SDB data were pooled into one
and the data from patients with moderate and severe
SDB into a second group. The variability of stage-
specific agreement across subjects was analyzed on box-
whisker plots for each of the five AASM sleep stages.
Bland-Altman plots were used to assess differences be-
tween manual and automated estimates of total sleep
time, sleep efficiency (ratio of the total sleep time and
total recording time), and respiratory disturbance index
(RDI) across all subjects. Sleep onset was identified from
both manual and automated scoring (as three consecu-
tive non-wake epochs) and the absolute differences be-
tween the two estimates were analyzed as a function of
SDB severity and accuracy of detection of stages Wake
and N1 in each particular subject.

Results

Correlations across staged time

The inter-class correlations across subjects with respect
to minutes staged by manual and auto-scoring is pre-
sented in Table2. The strongest concordance was in
stage N3 and the weakest in Stage N1.

Pooled accuracy by stage

Table 3 shows the agreements between the manual (M)
and automated (A) scoring; each row representing the
stage assigned by manual scoring and each column repre-
senting the stage assigned by the automated algorithms.
With the exception of stage N1, the stage-specific agree-
ment as measured with the respective Kappa coefficients
was substantial in the group of healthy individuals and
patients with mild SDB, and moderate in patients with
moderate and severe SDB. For epochs manually staged as
Wake, misclassifications were distributed fairly evenly be-
tween N1 and N2 (9.2 and 7.7% respectively). For manu-
ally staged N1, the preponderance of misclassified epochs
were assigned to stage N2 (38.4%) followed by Wake
(24.7%) and REM (11.2%). The misclassifications between
N3 and N2 (13.5%) and REM and N2 (12.4%) occurred
mostly in borderline epochs, i.e., during transitions be-
tween these stages.

Based on manual scoring, the distribution of sleep
architecture changed across the two groups as SDB se-
verity increased, most noticeable with stage N2 (44.7 vs.
25.1%), stage N3 (104 vs. 2.7%) and REM (134 vs.

Table 2 Inter-Class Correlation (ICC) between manual and
auto-scored time by stage

Icc p <
Wake 0.58 00001
N1 037 0001

N2 0.76 00001
N3 087 00001
REM 0.75 00001
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Table 3 Pair-wise epoch by epoch agreement by SDB group
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Automated staging

Normal and Mild SDB (n=40,641 epochs)

Wake N1 N2
Wake 79.7% 9.2% 7.7%
NREM1 24.7% 25.1% 384%
NREM2 6.2% 7.6% 77.7%
NREM3 1.8% 0.0% 13.5%
REM 4.9% 6.6% 124%
No. epochs 8663 3793 18019
% epochs 21.3% 9.3% 44.3%
Kappa 0.67 0.21 0.60
Moderate and Severe SDB (n= 29,938 epochs)

Wake N1 N2
Wake 71.1% 16.9% 8.1%
NREM1 18.9% 30.0% 40.3%
NREM?2 8.6% 14.1% 70.5%
NREM3 7.1% 0.0% 26.7%
REM 4.5% 10.8% 15.9%
No. epochs 8851 5349 11430
% epochs 29.6% 17.9% 382%
Kappa 0.60 0.17 048

%

N3 REM Total No. epochs Epochs
0.8% 2.6% 100% 7342 18.1%
0.6% 11.2% 100% 5436 134%
6.0% 24% 100% 18167 44.7%

83.9% 0.9% 100% 4234 10.4%
1.4% 74.6% 100% 5462 134%
4817 5349

11.9% 13.2%
0.76 0.72

N3 REM Total
0.3% 3.6% 100% 9086 224%
0.4% 10.5% 100% 6955 17.1%
4.1% 2.7% 100% 10205 25.1%

65.0% 1.1% 100% 1077 27%
1.4% 67.4% 100% 2615 6.4%
1204 3104
4.0% 104%

0.60 058

6.4%). There were also important differences in the
agreement between manual and automated staging when
the normal and mild SDB group was compared to the
moderate and severe SDB group. The percentage of
epochs identified as Wake by visual scoring and staged
as N1 increased from 9.2% to 16.9% due to the influence
of obstructive breathing on sleep continuity. Similarly,
the percentage of epochs visually scored as N2 and
staged as N1 increased across the two groups from 7.6%
to 14.1%. The concordance for N3 decreased from 83.9%
to 65.0%, with misclassifications shifting to N2 likely as
a result of a decreased amount and continuity of slow
wave sleep in patients with more severe SDB. Finally, the
increase in REM sleep misclassified as N1 (10.8% vs.
6.6%) for those with moderate/severe SDB was likely
influenced by the overall reduction in REM time.

Kappa coefficients showed strong agreement for Wake,
N3 and REM and moderate agreement for N2 in the
normal and mild SDB group. In patients with moderate
and severe SDB, Kappa coefficients showed moderate
agreement for Wake, N2, N3 and REM.

Staging accuracy by subject

The box-whisker plots in Figure2 present the distribu-
tions of the stage-specific sensitivity and positive predict-
ive value (PPV) across individuals and SDB severity. The
two halves of the box represent than range of accuracies

for the quartiles above and below the median value for
the SDB group. The median sensitivity for Wake was
80% for the normal/mild and 70% for the moderate/se-
vere SDB groups. The median distributions for all of the
stages were this range other than Stage N1. Variability in
the individual accuracies about the median (i.e., length
of the box and whiskers) were fairly high for both sensi-
tivity and PPV across all stages and SDB groups, and,
with the exception of stage N2, the distributions were
not markedly affected by SDB severity. Both sensitivity
and PPV distributions for stage N2 significantly widened
in patients with moderate and severe SDB as a result of
an increased confusion of this stage with stage N1 (see
also Table3). The improved PPV for wake in patients
with moderate/severe SDB is likely the result of rapid
onset of sleep after lights out.

TST and sleep efficiency
The Bland-Altman plot in Figure 3 highlight the differ-
ences in the measured total sleep time. There was a
slight bias toward under-reporting the total sleep time
(TST) and the maximum expected error in TST would
be +17.4% (based on the SD of 27.4min x 2 and mean
TST of 310).

The Bland-Altman plot in Figure 4 shows there was no
bias in the measurement of sleep efficiency when the
automated scoring is compared to manual scoring, with



Levendowski et al. International Archives of Medicine 2012, 5:21
http://www.intarchmed.com/content/5/1/21

Page 5 of 9

-

Wake - Sensitivity Wake - PPV
100% 100
z %
£ 80w E 0% -
S 5
= S
2 60% | 3 60% |
] &
& H
F 0% o 40% -
2 20% s 20% -
w
= A =
Horm)/Mild Mad/Sev Hormy/Mild Mod/Sev
Stage N1 - Sensitivity Stage N1 - PPV
100% 100%
= =
3 : -
B 80% £ BO%
3 o
o = "
% 60% - % 60%
" £
O 0% - o 40%
o 2 .
8 20% 2 20% -
® HS
Horm/Mild Mod/Sev Norm/Mild Mod/Sev
: Stage N2 - Sensitivity Stage N2 - PPV
100% 4 100%
> >
k- -+
g os0% g sox
5 S
o o
3 60% - 3 60w
1 - a 3
o A% - o A% | &
io' £
2 0% i 20% -
w (']
# #
0% [ .
Horm/Mild Mod/Sev Horm/Mild Mod/Sey
Stage N3 - Sensitivity Stage N3 - PPV
100% o 100%
-3 -
E B0% og 80%
S o
= B
2 o0 £ o |
= n
H =
o 2 d w 1
g 40% : 0%
= -
g H
2 20% 7y & 2
i =
=
0% -+ & " - T A
Horm/Mild Mod/Sev Morm/Mild Mod/Sey
— Stage REM - Sensitivity Stage REM - PPV
: 100%
H z
g 80w ]
° E B0% -
< 3
3 =
% 60% 1 2 6% -
- n
[ ]
= ” =
S 0% 4 O 40w
5 =
] S
& 20% - 8 a0%
* =
0% - & 0% -+ &
Horm/Mild Mod/Sew Horm/Mild Mod/Sev

Figure 2 Box-Whisker plots comparing stage-specific sensitivity and positive predictive value (PPV) by SDB severity. The box represents
the distributions of the 2nd and 3rd quartile about the median, the whiskers represent the 10% and 90%, and the A identifies outliers. Only

subjects with a minimum of 20 manually scored epochs of the pertinent stage were included the respective plot.

sleep efficiency under-reported by a maximum of 13.8%

for patients two standard deviations from the mean.

The impact of differences in total sleep time between
manual and auto-scoring on the computed respiratory
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disturbance index is presented in Figure5. Of the 13
cases that had an RDI difference greater than 10 events/
hour, eight were severe, and the differences would not
have affected the diagnoses.

Sleep onset

The effect of Wake/sleep misclassifications was most obvi-
ous in the automated detection of sleep onset, where the
absolute difference between the manual and automatic es-
timate was notable (i.e.,, > 3 minutes) in over 50% of the
studies, with differences of over 10 minutes occurring in
27% of the subjects (Table4). The error in the sleep onset
detection did not seem to be related to the SDB severity.
Automated scoring tended to underestimate sleep laten-
cies: sleep onset was detected earlier by the algorithm in
73%, 90% and 84.6% of the subjects in the 4 — 10, 11 — 20
and > 20 minute groups respectively.

Given the automated scoring identified sleep onset
first in most of the cases where there was substantial
disagreement, it was important to determine if the mis-
classifications resulted from brief periods of stage N1
followed by either wake or stage N1 (which is difficult to
score by either method) or the epochs were staged as
deeper sleep. Figure6 presents a box-whisker plot in
which the percentage of epochs stages as either wake or
N1 subsequent to the detection of sleep onset by one
method but before the detection by the other method.
These results indicate the in a majority of the cases, 60
— 85% of the epochs were classified as wake or very light
sleep during the periods where there was disagreement
in the detection of sleep onset.

Discussion

This study evaluated the accuracy of a novel algorithm
designed to stage sleep from a single EEG channel using
two sensors on the forehead. Overall, the agreement be-
tween the manual and automated scoring for all stages
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decreased as the severity of SBD increased, but remained
fairly high for stages Wake, N2 and REM. The agreement
by stage across the normal/mild SDB group were remark-
ably similar. For the moderate/severe SDB group the over-
all agreement dropped as the algorithm tended to classify
into ‘lighter’ stages as compared to the human scorer, i.e.
scored N1 in place of stages N2, REM epochs as N1 or
N2, and N2 in place of manually scored N3. The agree-
ment between manual and automated scoring for stage
N1 was generally poor irrespective of the SDB severity,
and this stage was typically confused with Wake or N2.
While the disagreement between stages N1 and N2 is not
relevant for most clinical situations (where the two stages
are often viewed as a single ‘light NREM’ stage), unba-
lanced misclassification of a large proportion of N1 epochs
as Wake or vice versa could have an impact on total sleep
time and RDI estimates.

The Bland-Altman plot of manual and automated esti-
mates of total sleep time suggest the misclassifications of
N1 as Wake were, on average, counterbalanced by mis-
classification of Wake as sleep, as the bias for TST esti-
mates was negligible and variance clinically insignificant.
The wake/sleep misclassifications were stronger as the
SDB severity increased, in part because there were more
wake epochs. The influence of the Wake/sleep misclassi-
fication on the automated estimates of RDI was, none-
theless, negligible.

The validity of an algorithm for automated sleep sta-
ging is often assessed by comparison of its overall and
stage-specific accuracy to the agreement between two
(or more) human raters who scored the same data. This
study was limited by the fact that we compared accuracy
to one set of sleep scores per patient, with several tech-
nicians contributing to the scoring of the data set. The
approach reduced the bias that may have been intro-
duced by a single rater, or the introduction of “invalid”
epochs if two raters did not agree. Given our results
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Figure 3 Bland-Altman plot comparing estimates of total sleep
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were reliant on a single rater per study, the report by
Norman and co-workers [22] provided a valuable bench-
mark for inter-rater agreement across normal subjects
and patients with sleep disordered breathing. The agree-
ment between our algorithm and manual scoring for
normal/mild and moderate severe SDB groups (Table 2)
were equivalent to the inter-rater reliability reported by
Norman for Stages N2 and N3. Our auto-scoring vs.
manual agreement was similar to inter-rater reliability
for stage Wake in normal/mild SDB. Our agreement was
slightly inferior to the reported inter-rater reliability for
REM and N1, which may be partially explained by the
fact that our SDB patients were more severe than the
Norman cohort (RDI=41+28 vs. 34+31 events/hr).
Suboptimal recognition of cortical arousals resulting
from SDB may also have contributed to the difficulties
in the algorithm staging REM sleep and differentiation
between wake and stage N1. The reduced EMG band-
width and slightly different electrode placement might
also be responsible, as the accuracy of both REM and
N1 detection was better in the original validation study
on healthy controls in which the EMG power was
derived from 40 to 128 Hz.

For this study we used as the differential inputs signals
from the left and right EOG, rather than a standard place-
ment used for development and initial validation of the al-
gorithm. The only adaptation made was to accommodate

Table 4 Distribution of subjects by SDB severity and
sleep onset difference categories

n (%) <3min 4to 10min 11 to 20 min > 20min Total
Normal/Mild 22 (49 12 (27) 7 (15) 409 45
Moderate/Severe 20 (48) 10 (24) 3(7) 921 42
Total 42 (48) 22 (25) 10 (12) 13(15) 87

differences in sampling rates. Thus, this study served to
assess the generalizability of the staging algorithm using
forehead EEG in patients with sleep disordered breathing,
a chronic disease known to disrupt sleep architecture and
compromise manual staging accuracy. We made no effort
to manually edit the full-disclosure auto-scored epochs, al-
though the capability is provided for physicians boarded in
sleep medicine to review and interpret the staging. One of
the advantages of staging sleep from the forehead is access
to information provided by eye movements. Manually
editing would definitely have eliminated obvious misclassi-
fications between stage N1 and REM resulting from slow
eye rolls apparent after long periods of wake. The disad-
vantage is that alpha waves useful in staging N1 are visu-
ally undetectable.
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Figure 6 Box-Whisker plots across all subjects showing the
percentage of epochs classified as Wake or N1 by automated
(manual) scoring subsequent to its detection of sleep onset but
prior to recognition of sleep onset by manual (automated)
scoring.
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Others algorithms have been evaluated for the staging
of sleep from the forehead. The Kappa coefficients
obtained for wake, light non-REM (N1 and N2), N3
(SWS) and REM in the test group of 131 subjects using
two EOG channels [25] were equivalent to the results
we obtained in the moderate/severe SDB group. The
inter-class correlations for time in N3 and REM across
our SDB subjects were on average 20% better than
results obtained in healthy subjects using a wireless fore-
head system [26]. The algorithms in this study was also
equivalent to a five-state, single channel method based
on sensor sites at Cz and Pz [26]. When comparing the
accuracy of our automated scoring algorithm with the
latter method, it is important to note that the sensitivity
and positive predictive values presented in this study are
based on one scorer per study, with multiple technicians
used to score the data set. Conversely, Berthomier et al.
[27] used two expert scorers and eliminated epochs in
which raters disagree, an approach that can artificially
inflated accuracy metrics by discarding epochs found dif-
ficult to score by human experts.

Because sleep staging is time consuming and some-
what subjective in nature, the auto-scoring can intro-
duce a degree of consistency in the characterization of
sleep architecture prior to visual inspection, a favorable
approach when sleep EEG is used to evaluate outcomes
such as those based on cognitive behavioral therapy
[32,33]. Given the automated algorithm can be applied
to stage sleep in real time and there were limited differ-
ences in RDI values calculated with total sleep times
derived from manual vs. automated scoring from two
electrooculographic leads, the algorithm could also be
used to assist technicians identify two-hours of sleep
time needed to transition from diagnosis to therapy in
continuous positive airway pressure split night studies.
Real time sleep staging could also be beneficial during
assessment of sleep stage related RDI differences in
patients undergoing an oral appliance titration study or
in partial sleep-deprivation studies to allow the attending
technician to monitor sleep stages of interest.

The combination of a lightweight, easily applied data ac-
quisition system with automated sleep staging algorithms
holds promise for routine application of sleep profiling in
the evaluation of many disease states that are currently dif-
ficult to identify. As highlighted in the introduction, sleep
disturbances are among the hallmark features of many psy-
chiatric and neurological disorders and there is a need for
objective biomarkers to confirm diagnosis, to identify sub-
types and ultimately to ensure treatment efficacy. For ex-
ample, periods of wake that serve as biomarkers of insom-
nia are distinct from the abnormally long and dense REM
cycles for major depression. Differentiating depression from
insomnia would be an important first step before introduc-
tion of a pharmacological or other intervention. In the case
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of depression, the normalization of the REM patterns, as
seen in response to the Selective Serotonin Reuptake Inhi-
bitors (SSRI), could be used as an indicator of treatment ef-
ficacy [34-36]. In contrast, sleep disturbances in PTSD and
are often resistant to treatment with SSRIs [20,37]. Al-
though there is substantial symptom overlap between de-
pression and PTSD (e.g. depressed mood, anhedonia, social
withdrawal, and decreased concentration), PTSD is charac-
terized by disturbed sleep continuity with decreased total
sleep time, poor sleep efficiency, minimal slow wave sleep
and long but fragmented REM. More recently it has been
suggested that fragmented REM sleep, characteristic of
many patients with PTSD, may disrupt the process of en-
coding traumatic memories that normally allows for their
recollection without the emotional charge and associated
sympathetic arousal [20,38,39]. Drugs such as prazosin or
clonidine, which act antagonistically at noradrenergic
receptors, have recently been shown to improve sleep and
relieve symptoms in some PTSD patients specifically redu-
cing the number and severity of nightmares [40,41]. Thus,
sleep profiling could be used to differentiate insomnia from
depression or to indentify trauma victims at risk of devel-
oping PTSD and to improve the selection of therapy.
Follow-up studies could evaluate the efficacy of prescribed
pharmacological treatments in those diagnosed with psy-
chiatric conditions.

Conclusions

The level of agreement between automated sleep staging
and visual scoring across all sleep stages other than N1 is
approximately the same as the inter-rater agreement be-
tween scorers. Decreased auto-staging accuracy corre-
sponds with increased sleep disordered breathing severity.
These results suggest that the automated sleep staging al-
gorithm may prove useful in evaluating sleep architecture
patterns in patients with chronic diseases. Further investi-
gation is required to determine if biomarkers derived from
the automated staging will assist in the diagnosis and
treatment of chronic diseases.
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