Carlsson A: The occurrence, distribution and physiological role of catecholamines in the nervous system.
Pharmacological reviews 1959,11(2, Part 2):490–493.
CAS
PubMed
Google Scholar
Bernheimer H, Hornykiewicz O: [Decreased homovanillic acid concentration in the brain in parkinsonian subjects as an expression of a disorder of central dopamine metabolism].
Klinische Wochenschrift 1965,43(13):711–715.
Article
CAS
PubMed
Google Scholar
Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F: Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations.
Journal of the neurological sciences 1973,20(4):415–455.
Article
CAS
PubMed
Google Scholar
Di Chiara G, Bassareo V: Reward system and addiction: what dopamine does and doesn't do.
Current opinion in pharmacology 2007,7(1):69–76.
Article
CAS
PubMed
Google Scholar
Ross S, Peselow E: The neurobiology of addictive disorders.
Clinical neuropharmacology 2009,32(5):269–276.
Article
CAS
PubMed
Google Scholar
Arias-Carrion O, Poppel E: Dopamine, learning, and reward-seeking behavior.
Acta neurobiologiae experimentalis 2007,67(4):481–488.
PubMed
Google Scholar
Kandel ER: The molecular biology of memory storage: a dialog between genes and synapses.
Bioscience reports 2001,21(5):565–611.
Article
CAS
PubMed
Google Scholar
Pessiglione M, Schmidt L, Draganski B, Kalisch R, Lau H, Dolan RJ, Frith CD: How the brain translates money into force: a neuroimaging study of subliminal motivation.
Science (New York, NY) 2007,316(5826):904–906.
Article
CAS
Google Scholar
Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD: Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans.
Nature 2006,442(7106):1042–1045.
Article
CAS
PubMed
Google Scholar
Schultz W: Subjective neuronal coding of reward: temporal value discounting and risk.
The European journal of neuroscience
31(12):2124–2135.
Shizgal P: Neural basis of utility estimation.
Current opinion in neurobiology 1997,7(2):198–208.
Article
CAS
PubMed
Google Scholar
Berridge KC, Robinson TE: What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?
Brain research 1998,28(3):309–369.
Article
CAS
Google Scholar
Ikemoto S, Panksepp J: The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking.
Brain research 1999,31(1):6–41.
Article
CAS
Google Scholar
Phillips AG, Vacca G, Ahn S: A top-down perspective on dopamine, motivation and memory.
Pharmacology, biochemistry, and behavior 2008,90(2):236–249.
Article
CAS
PubMed
Google Scholar
Wise RA: Dopamine and reward: the anhedonia hypothesis 30 years on.
Neurotoxicity research 2008,14(2–3):169–183.
Article
PubMed
Google Scholar
Bjorklund A, Dunnett SB: Dopamine neuron systems in the brain: an update.
Trends in neurosciences 2007,30(5):194–202.
Article
PubMed
Google Scholar
Smith Y, Villalba R: Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains.
Mov Disord 2008,23(Suppl 3):S534–547.
Article
PubMed
Google Scholar
Barbeau A: High-level levodopa therapy in Parkinson's disease: five years later.
Transactions of the American Neurological Association 1974, 99:160–163.
CAS
PubMed
Google Scholar
Yim CY, Mogenson GJ: Electrophysiological studies of neurons in the ventral tegmental area of Tsai.
Brain Res 1980,181(2):301–313.
Article
CAS
PubMed
Google Scholar
D'Ardenne K, McClure SM, Nystrom LE, Cohen JD: BOLD responses reflecting dopaminergic signals in the human ventral tegmental area.
Science (New York, NY) 2008,319(5867):1264–1267.
Article
Google Scholar
Wise RA: Forebrain substrates of reward and motivation.
The Journal of comparative neurology 2005,493(1):115–121.
Article
CAS
PubMed
Google Scholar
Wise RA: Dopamine, learning and motivation.
Nature reviews 2004,5(6):483–494.
Article
CAS
PubMed
Google Scholar
Weidong L, Shen C, Jankovic J: Etiopathogenesis of Parkinson disease: a new beginning?
Neuroscientist 2009,15(1):28–35.
Article
Google Scholar
Zhou FM, Wilson CJ, Dani JA: Cholinergic interneuron characteristics and nicotinic properties in the striatum.
Journal of neurobiology 2002,53(4):590–605.
Article
CAS
PubMed
Google Scholar
Zhou FM, Wilson C, Dani JA: Muscarinic and nicotinic cholinergic mechanisms in the mesostriatal dopamine systems.
Neuroscientist 2003,9(1):23–36.
Article
CAS
PubMed
Google Scholar
Missale C, Nash SR, Robinson SW, Jaber M, Caron MG: Dopamine receptors: from structure to function.
Physiological reviews 1998,78(1):189–225.
CAS
PubMed
Google Scholar
Vallone D, Picetti R, Borrelli E: Structure and function of dopamine receptors.
Neuroscience and biobehavioral reviews 2000,24(1):125–132.
Article
CAS
PubMed
Google Scholar
Saji H, Iida Y, Kawashima H, Ogawa M, Kitamura Y, Mukai T, Shimazu S, Yoneda F: In vivo imaging of brain dopaminergic neurotransmission system in small animals with high-resolution single photon emission computed tomography.
Anal Sci 2003,19(1):67–71.
Article
CAS
PubMed
Google Scholar
Jaber M, Robinson SW, Missale C, Caron MG: Dopamine receptors and brain function.
Neuropharmacology 1996,35(11):1503–1519.
Article
CAS
PubMed
Google Scholar
Verhoeff NP: Radiotracer imaging of dopaminergic transmission in neuropsychiatric disorders.
Psychopharmacology 1999,147(3):217–249.
Article
CAS
PubMed
Google Scholar
Piccini P: Neurodegenerative movement disorders: the contribution of functional imaging.
Current opinion in neurology 2004,17(4):459–466.
Article
PubMed
Google Scholar
Sesack SR, Carr DB, Omelchenko N, Pinto A: Anatomical substrates for glutamate-dopamine interactions: evidence for specificity of connections and extrasynaptic actions.
Annals of the New York Academy of Sciences 2003, 1003:36–52.
Article
CAS
PubMed
Google Scholar
Lapish CC, Kroener S, Durstewitz D, Lavin A, Seamans JK: The ability of the mesocortical dopamine system to operate in distinct temporal modes.
Psychopharmacology 2007,191(3):609–625.
Article
CAS
PubMed
Google Scholar
Venton BJ, Zhang H, Garris PA, Phillips PE, Sulzer D, Wightman RM: Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing.
Journal of neurochemistry 2003,87(5):1284–1295.
Article
CAS
PubMed
Google Scholar
Schultz W: Getting formal with dopamine and reward.
Neuron 2002,36(2):241–263.
Article
CAS
PubMed
Google Scholar
Schultz W: Behavioral dopamine signals.
Trends in neurosciences 2007,30(5):203–210.
Article
CAS
PubMed
Google Scholar
Schultz W: Multiple dopamine functions at different time courses.
Annual review of neuroscience 2007, 30:259–288.
Article
CAS
PubMed
Google Scholar
Arias-Carrion O, Freundlieb N, Oertel WH, Hoglinger GU: Adult neurogenesis and Parkinson's disease.
CNS & neurological disorders drug targets 2007,6(5):326–335.
Article
CAS
Google Scholar
Cools R: Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson's disease.
Neuroscience and biobehavioral reviews 2006,30(1):1–23.
Article
CAS
PubMed
Google Scholar
Maetzler W, Liepelt I, Berg D: Progression of Parkinson's disease in the clinical phase: potential markers.
Lancet neurology 2009,8(12):1158–1171.
Article
CAS
PubMed
Google Scholar
Nieoullon A: Dopamine and the regulation of cognition and attention.
Progress in neurobiology 2002,67(1):53–83.
Article
CAS
PubMed
Google Scholar
Gibb WR, Mountjoy CQ, Mann DM, Lees AJ: The substantia nigra and ventral tegmental area in Alzheimer's disease and Down's syndrome.
Journal of neurology, neurosurgery, and psychiatry 1989,52(2):193–200.
Article
CAS
PubMed
Google Scholar
Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, et al.: Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET.
Nature 1997,385(6617):634–636.
Article
CAS
PubMed
Google Scholar
Abi-Dargham A, Moore H: Prefrontal DA transmission at D1 receptors and the pathology of schizophrenia.
Neuroscientist 2003,9(5):404–416.
Article
CAS
PubMed
Google Scholar
Abi-Dargham A: Probing cortical dopamine function in schizophrenia: what can D1 receptors tell us?
World Psychiatry 2003,2(3):166–171.
PubMed
Google Scholar
Previc FH: Dopamine and the origins of human intelligence.
Brain and cognition 1999,41(3):299–350.
Article
CAS
PubMed
Google Scholar
Kimberg DY, D'Esposito M, Farah MJ: Effects of bromocriptine on human subjects depend on working memory capacity.
Neuroreport 1997,8(16):3581–3585.
Article
CAS
PubMed
Google Scholar
Changizi MA, McGehee RM, Hall WG: Evidence that appetitive responses for dehydration and food-deprivation are learned.
Physiology & behavior 2002,75(3):295–304.
Article
CAS
Google Scholar
Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L: Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain.
Neuropsychopharmacology 1994,11(4):245–256.
CAS
PubMed
Google Scholar
Dickinson A, Smith J, Mirenowicz J: Dissociation of Pavlovian and instrumental incentive learning under dopamine antagonists.
Behavioral neuroscience 2000,114(3):468–483.
Article
CAS
PubMed
Google Scholar
Pine A, Shiner T, Seymour B, Dolan RJ: Dopamine, time, and impulsivity in humans.
J Neurosci
30(26):8888–8896.
Di Chiara G, Imperato A: Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats.
Proceedings of the National Academy of Sciences of the United States of America 1988,85(14):5274–5278.
Article
CAS
PubMed
Google Scholar
Olive MF, Koenig HN, Nannini MA, Hodge CW: Stimulation of endorphin neurotransmission in the nucleus accumbens by ethanol, cocaine, and amphetamine.
J Neurosci 2001,21(23):RC184.
CAS
PubMed
Google Scholar
Lin Z, Uhl GR: Dopamine transporter mutants with cocaine resistance and normal dopamine uptake provide targets for cocaine antagonism.
Molecular pharmacology 2002,61(4):885–891.
Article
CAS
PubMed
Google Scholar
Zahniser NR, Sorkin A: Trafficking of dopamine transporters in psychostimulant actions.
Seminars in cell & developmental biology 2009,20(4):411–417.
Article
CAS
Google Scholar
Kahlig KM, Lute BJ, Wei Y, Loland CJ, Gether U, Javitch JA, Galli A: Regulation of dopamine transporter trafficking by intracellular amphetamine.
Molecular pharmacology 2006,70(2):542–548.
Article
CAS
PubMed
Google Scholar
Kumar S, Porcu P, Werner DF, Matthews DB, Diaz-Granados JL, Helfand RS, Morrow AL: The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress.
Psychopharmacology 2009.
Google Scholar
Mereu G, Gessa GL: Low doses of ethanol inhibit the firing of neurons in the substantia nigra, pars reticulata: a GABAergic effect?
Brain Res 1985,360(1–2):325–330.
Article
CAS
PubMed
Google Scholar
Haile CN, Kosten TA, Kosten TR: Pharmacogenetic treatments for drug addiction: alcohol and opiates.
The American journal of drug and alcohol abuse 2008,34(4):355–381.
Article
PubMed
Google Scholar
Kreek MJ, LaForge KS, Butelman E: Pharmacotherapy of addictions.
Nat Rev Drug Discov 2002,1(9):710–726.
Article
CAS
PubMed
Google Scholar
Churchill L, Klitenick MA, Kalivas PW: Dopamine depletion reorganizes projections from the nucleus accumbens and ventral pallidum that mediate opioid-induced motor activity.
J Neurosci 1998,18(19):8074–8085.
CAS
PubMed
Google Scholar
Sorge RE, Clarke PB: Rats self-administer intravenous nicotine delivered in a novel smoking-relevant procedure: effects of dopamine antagonists.
The Journal of pharmacology and experimental therapeutics 2009.
Google Scholar
Rothman RB, Gendron T, Hitzig P: Hypothesis that mesolimbic dopamine (DA) plays a key role in mediating the reinforcing effects of drugs of abuse as well as the rewarding effects of ingestive behaviors.
Journal of substance abuse treatment 1994,11(3):273–275.
Article
CAS
PubMed
Google Scholar
Brami-Cherrier K, Roze E, Girault JA, Betuing S, Caboche J: Role of the ERK/MSK1 signalling pathway in chromatin remodelling and brain responses to drugs of abuse.
Journal of neurochemistry 2009,108(6):1323–1335.
Article
CAS
PubMed
Google Scholar
Zhang D, Zhang H, Jin GZ, Zhang K, Zhen X: Single dose of morphine produced a prolonged effect on dopamine neuron activities.
Molecular pain 2008, 4:57.
Article
PubMed
Google Scholar
Robinson TE, Berridge KC: Review. The incentive sensitization theory of addiction: some current issues.
Philosophical transactions of the Royal Society of London 2008,363(1507):3137–3146.
Article
PubMed
Google Scholar
Berridge KC, Kringelbach ML: Affective neuroscience of pleasure: reward in humans and animals.
Psychopharmacology 2008,199(3):457–480.
Article
CAS
PubMed
Google Scholar
Berridge KC: The debate over dopamine's role in reward: the case for incentive salience.
Psychopharmacology 2007,191(3):391–431.
Article
CAS
PubMed
Google Scholar
Rocha BA, Odom LA, Barron BA, Ator R, Wild SA, Forster MJ: Differential responsiveness to cocaine in C57BL/6J and DBA/2J mice.
Psychopharmacology 1998,138(1):82–88.
Article
CAS
PubMed
Google Scholar
McNamara RK, Levant B, Taylor B, Ahlbrand R, Liu Y, Sullivan JR, Stanford K, Richtand NM: C57BL/6J mice exhibit reduced dopamine D3 receptor-mediated locomotor-inhibitory function relative to DBA/2J mice.
Neuroscience 2006,143(1):141–153.
Article
CAS
PubMed
Google Scholar
Belej T, Manji D, Sioutis S, Barros HM, Nobrega JN: Changes in serotonin and norepinephrine uptake sites after chronic cocaine: pre- vs. post-withdrawal effects.
Brain Res 1996,736(1–2):287–296.
Article
CAS
PubMed
Google Scholar
Johnson BA: Role of the serotonergic system in the neurobiology of alcoholism: implications for treatment.
CNS drugs 2004,18(15):1105–1118.
Article
CAS
PubMed
Google Scholar
Johnson BA: Update on neuropharmacological treatments for alcoholism: scientific basis and clinical findings.
Biochemical pharmacology 2008,75(1):34–56.
Article
CAS
PubMed
Google Scholar
van Schouwenburg M, Aarts E, Cools R: Dopaminergic modulation of cognitive control: distinct roles for the prefrontal cortex and the basal ganglia.
Current pharmaceutical design
16(18):2026–2032.
Hyman SE, Malenka RC, Nestler EJ: Neural mechanisms of addiction: the role of reward-related learning and memory.
Annual review of neuroscience 2006, 29:565–598.
Article
CAS
PubMed
Google Scholar
Matsumoto M, Hikosaka O: Two types of dopamine neuron distinctly convey positive and negative motivational signals.
Nature 2009,459(7248):837–841.
Article
CAS
PubMed
Google Scholar